
ads.cert Open Source
Software
Implementer's Guide

January 2022

Presented by the IAB Tech Lab Cryptographic Security Foundations working group
Please email support@iabtechlab.com with feedback or questions. This document is
available online at https://iabtechlab.com/standards/ads-cert/

© IAB Technology Laboratory

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

Program Leaders:

Curtis Light, Staff Software Engineer - Google

Rob Hazan, Senior Director, Product - Index Exchange

Other Significant Contributions from:

Ben Antier, CEO - Publica

Nabhan El-Rahman, CTO - Publica

Joshua Gross, Senior Engineering Lead - Index Exchange

Bret Ikehara, Staff Software Engineer, Publica

Johnny Li, Software Engineer, Index Exchange

Amit Shetty, Programmatic Products & Partnerships - IAB Tech Lab

Sam Mansour, Principal Product Manager - Moat

Miguel Morales, CTO & Co-Founder - Lucidity Tech

Colm Geraghty, Principal Architect - Verizon Media Group

Mani Gandham, Engineering - Index Exchange

James Wilhite, Director of Product management, Publica

IAB Tech Lab Lead:

Amit Shetty

VP, Programmatic Products & Partnerships - IAB Tech Lab

About IAB Tech Lab

The IAB Technology Laboratory (Tech Lab) is a non-profit research and development

consortium that produces and provides standards, software, and services to drive growth of an

effective and sustainable global digital media ecosystem. Comprised of digital publishers and ad

technology firms as well as marketers, agencies, and other companies with interests in the

interactive marketing arena, IAB Tech Lab aims to enable brand and media growth via a

transparent, safe, effective supply chain, simpler and more consistent measurement, and better

advertising experiences for consumers, with a focus on mobile and TV/digital video channel

enablement. The IAB Tech Lab portfolio includes the DigiTrust real-time standardized identity

service designed to improve the digital experience for consumers, publishers, advertisers, and

third-party platforms. Board members include AppNexus, ExtremeReach, Google, GroupM,

Hearst Digital Media, Integral Ad Science, Index Exchange, LinkedIn, MediaMath, Microsoft,

Moat, Pandora, PubMatic, Quantcast, Telaria, The Trade Desk, and Yahoo! Japan. Established

in 2014, the IAB Tech Lab is headquartered in New York City with an office in San Francisco

and representation in Seattle and London.

Learn more about IAB Tech Lab here: www.iabtechlab.com

http://www.iabtechlab.com/

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

TABLE OF CONTENTS

Documentation links ... 1

Introduction ... 1

How ads.cert Authenticated Connections works 2

The ads.cert open source software .. 5

Implementation process ... 6

Integrate the ads.cert OSS API .. 6

Select your identification domain ... 7

Generate your keyring file... 8

Publish your public key in DNS .. 10

Publish delegation DNS records .. 10

Testing your integration .. 11

Testing signers .. 11

Testing verifiers ... 11

Monitoring your deployment .. 11

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 1 of 11

Documentation links

● ads.cert Primer

● ads.cert Open Source Software Implementer’s Guide (this doc)

● ads.cert Call Signs Protocol Specification

● ads.cert Open Source Software Design Doc

● ads.cert Authenticated Connections Protocol Specification

Introduction

The ads.cert protocols add security to various aspects of programmatic advertising.

Authenticated Connections adds origin authentication and tamper resistance to HTTP requests

made server-to-server, such as bid request, creative fetches, and impression pings. In

particular, parties receiving these requests now have a verifiable way to know who is sending

them even when they don’t have a direct relationship with the other party.

Authenticated Delivery (in development, when introduced) adds authentication and tamper

resistance to bid requests and bid parameters as they traverse the supply path. While our initial

release doesn’t focus on this protocol, the infrastructure we’re adding will enable support for it in

a future version.

These protocols address real-world programmatic ads security issues faced by the industry.

For example, recent security research has highlighted schemes where parties have attempted

to impersonate server-side ad insertion (SSAI) platforms: challenging to identify, since traffic

appears to originate from the same cloud platforms and hosting providers that service real SSAI

businesses.

This document provides guidance for parties seeking to adopt the Authenticated Connections

protocol to secure server-to-server communication, using the ads.cert open source software

library. This is the recommended approach for adopters, rather than creating bespoke

implementations of the various sub-components (key generation, signing, verification, etc).

This implementer’s guide walks you through the details of ads.cert that you’ll need to know to

support it within your organization. Many technical details will be handled for you by open

source code that’s hosted by IAB Tech Lab and contributed by the community, so this guide

focuses on the steps to integrate it with your software. It also explains how you’ll publish keys in

a way that lets organizations authenticate each other.

https://github.com/IABTechLab/adscert
https://github.com/IABTechLab/adscert
https://github.com/IABTechLab/adscert

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 2 of 11

How ads.cert Authenticated Connections works

In ads.cert Authenticated Connections, you’ll be adding a standardized HTTP request header

containing a signature that secures:

● URL being invoked

● Body of POST requests

● Timestamp, origin, and destination values

Together, these help show that the request came from the originator it claims and hasn’t been

tampered with.

The request header looks like the following1:

X-Ads-Cert-Auth: from=ssai-serving.tk&from_key=w8f316&invoking=ad-

exchange.tk&nonce=u_sDzKMIp0eD&status=0×tamp=210519T174337&to=exc

hange-holding-company.ga&to_key=bBvfZU;

sigb=t1TupK6wn8pn&sigu=FQ5OQ6TmF2xU

Field Description

from The ads.cert Call Sign domain of the party sending the request

from_key The first 6 characters of the sending party’s public key

invoking The domain for the URL hostname being invoked

nonce Randomly generated number from the sending party in base64 encoded.

timestamp The time of generating signature in format:
YYMMDDTHHMMSS. This should be in UTC.

to The ads.cert Call Sign domain of the party receiving the signature

to_key The first 6 characters of the receiving party’s public key

sigb The signature over the message and body of the request

sigu The signature over the message, body, and URL of the request

One very important feature of this signing scheme to highlight is that signatures are between

two parties: the signer and the identified verifier. Anyone not a party to this signature cannot

verify it. This characteristic is by design: for implementers, it prevents third parties from

attempting to interpret information from signatures. The symmetric nature of the signatures also

1 Attribute naming not yet finalized

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 3 of 11

means that they cannot be used for non-repudiation of events: one business cannot record

signed messages and provide them as “proof” of activity. Most important is privacy: it prevents

the protocol from generating a public key verifiable cryptographic record of consumer activity on

the Internet.

For this reason, both the signer and verifier must publish public keys that mutually authenticate

each other. From those values, a cryptographic algorithm called “X25519” calculates a “Diffie-

Hellman” shared secret between the parties, used in signing and verifying messages. Our open

source software implementation handles these details for you, so you need not worry about the

details other than this non-intuitive requirement for both parties to provide keys.

The signer and verifier both publish their respective public keys in DNS so that the counterparty

may find them. This is a departure from other IAB Tech Lab specifications that publish files at

well-known URLs on web sites, and it should be easier to reliably implement. DNS serves as a

common location for publishing cryptographic keys in other security protocols such as that used

by email servers (a strong influence on our own product).

Let’s say a signer (using the ads.cert Call Sign ssai-serving.tk) wants to invoke this URL

(https://ads.ad-exchange.tk/impression?auction=6d8a826b02a2715e44) hosted

under the domain ad-exchange.tk, with the latter business operated by that identified with

ads.cert Call Sign exchange-holding-company.ga. The latter party will verify the signature.

The SSAI
platform:

ssai-serving.tk

needs to invoke: https://ads.ad-exchange.tk/impression?auction=6d8a826b02a2715e44

hosted as: ad-exchange.tk

which is
controlled by:

exchange-holding-company.ga

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 4 of 11

Both the signer and verifier start by publishing their respective public keys in DNS on their

ads.cert Call Sign domain.

$ host -t TXT _delivery._adscert.ssai-serving.tk

descriptive text "v=adcrtd k=x25519 h=sha256 p=w8f3160kEklY-

nKuxogvn5PsZQLfkWWE0gUq_4JfFm8"

$ host -t TXT _delivery._adscert.exchange-holding-company.ga

descriptive text "v=adcrtd k=x25519 h=sha256 p=bBvfZUTPDGIFiOq-

WivBoOEYWM5mA1kaEfpDaoYtfHg"

These well-known DNS subdomains let the counterparties find each other once they’re aware of

the need to exchange credentials.

One additional link needs to be made for the signer to know whose key will be used as the

verifier. The latter also publishes an additional record on an ad-exchange.tk subdomain that

indicates who is the ads.cert Call Sign domain authority responsible for verifying requests. The

signer uses this record to understand that relationship.

$ host -t TXT _adscert.ad-exchange.tk

descriptive text "v=adpf a=exchange-holding-company.ga"

With these three DNS records in place, the signer and verifier can act. On preparing to send an

HTTP request, the signer uses the language-specific ads.cert API to generate a signature and

adds that signature into the HTTP request headers.

signature, _ := signer.SignAuthenticatedConnection(

 adscert.AuthenticatedConnectionSignatureParams{

 DestinationURL: destinationURL,

 RequestBody: []byte{}})

req.Header["X-Ads-Cert-Auth"] = signature.SignatureMessages

The verifier receiving the request reconstructs the URL that was invoked by the signer. It

passes that URL, the request body, and the signature header to the ads.cert verification API to

check for a valid signature. The verifier may then act on that verification outcome accordingly,

although the safest initial policy may be to just log the outcome.

signatureHeaders := req.Header["X-Ads-Cert-Auth"]

reconstructedURL := …

body, _ := ioutil.ReadAll(req.Body)

verification, _ := signer.VerifyAuthenticatedConnection(

 adscert.AuthenticatedConnectionSignatureParams{

 DestinationURL: reconstructedURL,

 RequestBody: body,

SignatureMessageToVerify: signatureHeaders})

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 5 of 11

The ads.cert OSS implementation encapsulates the details behind these operations using a

simple API.

Review the examples found at https://github.com/IABTechLab/adscert to see API used in

working sample code.

The ads.cert open source software

There are three integration models that we support (or plan to support) using our open source

library.

● In-process integration of our Golang open source library; ephemeral DNS

● RPC integration using an open source signatory server we provide; ephemeral DNS

● Centralized crawling infrastructure with DNS persistence, suitable for larger enterprises

Clients must choose the appropriate solution for their online HTTP client environment, as the

signature must be calculated at some point where the full request body and URL being invoked

are known.

Servers may integrate these options in either an online or offline2 (logs processing)

environment, depending on whether the server implementer wants to obtain real-time signature

validation feedback.

Starting out, an implementer natively using Go may choose to implement in-process integration,

as this simplest solution only requires importing a Go module and using it in your code. The

application will rely on DNS lookups from the hosting OS to obtain necessary info. Clients

written in other languages will need to deploy the supplied RPC server (a wrapper around the

native Go implementation) to invoke the signing/verification logic. This RPC server can be

hosted over a network, or the server can be deployed as a sidecar/subprocess to the main

application.

2 Offline signature verification requires logging (1) the signature message, (2) a hash of the HTTP request

body, and (3) a hash of the invoked URL. Support for this verification mode has not yet been added to
the API.

https://github.com/IABTechLab/adscert

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 6 of 11

Implementation process

The remainder of this document walks you through setting this up for your organization,

including:

● Integrating the ads.cert open source API within your software

● Selecting the domain used to identify your organization to others

● Generating private keys for initial setup and rotation

● Publishing your public keys in DNS

● (For verifiers) Publishing delegation DNS records

Integrate the ads.cert OSS API

First, initialize the integrator API based on the desired configuration at an appropriate point in

your application startup.

import (

"flag"

"github.com/IABTechLab/adscert/pkg/adscert"

)

func main() {

 flag.Parse()

 ...

 config := adscert.ConfigureIntegratorFromFlags()

 signer := adscert.NewAuthenticatedConnectionsSigner(config)

 ...

}

Some organizations prefer using command line flags to pass in runtime parameters, while

others prefer configuration files in YAML, etc. Rather than dictate a specific configuration

technique, the ads.cert implementation will provide initialization parameters through a generic

data structure, and different pluggable strategies may be used to build it via flags, files,

databases, etc.

This technique also lets integrators configure the signer in a predictable way for use within

testing environments, as the keys, wall clock, and pseudorandom number generator can be

seeded with predictable values while still allowing for broader end-to-end code execution.

Once initialized, the ads.cert signer may be used to sign and verify signatures using the

SignAuthenticatedConnection and VerifyAuthenticatedConnection functions as shown in the

prior section.

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 7 of 11

Select your identification domain

You’ll need to determine the canonical domain name representing how you want your business

to be identified within the ads ecosystem, as this will be the domain under which you’ll publish

public keys. This requires a bit more thought than it sounds, but the criteria should be

straightforward.

Your identification domain needs to securely distribute public keys. DNS makes this

challenging, as DNS doesn’t contain cryptographic security protocols on its own. While

somewhat challenging to accomplish, there are situations where an attacker could falsify DNS

records and attribute an illegitimate key to your organization.

We structured ads.cert to permit publishing your keys under a dedicated domain that can

activate the DNSSEC protocol, adding an additional layer of security that minimizes this attack

risk. DNSSEC signs DNS records with an encryption key, and most hosting provider DNS

resolvers should verify that signature upon lookup to check for tampering.

Adopting DNSSEC is optional. We recommend signers adopt a DNSSEC-capable identification

domain from the outset to better protect from DNS spoofing attacks that could impersonate your

organization to others, but it isn’t mandatory. You have the option to enable DNSSEC at a later

time. We present these details so that you can evaluate the impersonation risks that your

organization may face and plan for current or potential future use of this feature.

Before adopting DNSSEC on a domain or DNS zone, evaluate the activities associated with that

domain. Most large consumer-facing Internet platforms DO NOT implement DNSSEC for their

consumer-facing traffic since the certificate authority ecosystem provides a suitable alternative

for browsers to authenticate servers. A domain you currently use for advertising delivery, for

instance, might not be a good candidate for activating DNSSEC, as you could experience a

small fractional loss of traffic. DNSSEC misconfigurations have also been the cause of various

DNS outages, so isolating this to a key distribution domain reduces this risk. We suggest that

you allocate a separate domain for this purpose, such as a corporate vanity domain. Verify that

your desired top-level domain, domain registrar, and authoritative DNS server support DNSSEC

before trying to set this up. Various online tools such as VeriSign’s DNSSEC analyzer may be

helpful for checking your domain’s DNSSEC status.

https://ianix.com/pub/dnssec-outages.html
https://ianix.com/pub/dnssec-outages.html
https://dnssec-analyzer.verisignlabs.com/

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 8 of 11

Generate your keyring file

The ads.cert OSS implementation helps you manage your private keys in a safe and secure

way. It uses a keyring JSON file containing encrypted private keys to maintain your key

configuration. Following a "configuration as code" DevOps methodology, you can safely store

this keyring file within your source control system alongside other configuration details. The

strong private key encryption protects these values in a way that even full public disclosure of

your keyring file should be safe. A "key encryption key" (KEK), maintained separately, lets the

application decrypt these keys for use at runtime.

We strongly recommend that you use a software version control system (Git, Subversion, etc)

to track changes to your key configuration file, although you can just keep a filesystem copy

(with adequate backups) at your own risk. The VCS will allow you to reconstruct changes

applied to your keyring over time.

This scheme provides the most security when operating in an environment where a key

management system (KMS) is available, as this doesn't disclose the KEK to anyone, and the

KMS only provides services that will let authorized roles encrypt/decrypt using the key identified

by URI. We strongly recommend that you use a KMS. Security can be further enhanced by

limiting which roles have access to the key decryption operations. By only granting decrypt

privileges to the roles that run applications, you can retain tight control over potential attack

vectors that could compromise security of your ads.cert key material, as changes to permissions

or deploying unauthorized code within the environment can generate auditable events (if

configured).

If you do not have access to a KMS or choose to use a more simple solution, you may instead

use a KEK provided by the local environment (e.g. filesystem). We do not encourage using this

option.

Your keyring file should either be deployed alongside your application in a configuration sidecar

(e.g. mounted to your containerized application) or built into your application deployment. If you

choose the latter option, keep in mind that key rotation opportunities will be coupled to your

software release schedule and could contain rollback risks. Follow the same process you would

use for deploying other such application startup configuration data of this nature. We strongly

recommend incorporating your keyring distribution process into your deployment automation.

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 9 of 11

In addition to holding encrypted private keys, your ads.cert keyring contains various metadata

about the keys which will help you manage versioning and key rotation. All key versions follow

this lifecycle:

● New - key generated and submitted to your source control system but not yet fully

deployed to your production environment. Not all application instances in your fleet

would be able to use the key yet.

● Published - key fully rolled out and stable within your application fleet. The public key

can be safely published in DNS, and counterparties may start using the key.

● Primary - key available in DNS for sufficient time so that counterparties would have had

opportunity to crawl it. Private key now used for signing operations, and counterparties

are assumed to be able to verify using the public key.

● Secondary - a former primary key that has been replaced by a newer primary key. The

public key remains published in DNS and usable for signature verification, but the key is

being wound down for signing.

● Archived - a former secondary key that is now unpublished from DNS. Counterparties

may have outdated info about your keys, so this state will let your system continue to

verify signatures expecting the obsolete version.

● Removed - a former archived key that has been removed from the keyring and no longer

available for signing/verification.

Key rotation need not be a frequent event, but this arrangement lets you perform it in a

controlled fashion where you can gradually ramp up use of a new key for signing over a longer

(e.g. multiple day) period. Unlike symmetric keys used for encryption (e.g. the AES algorithms),

the public keys and derived shared secrets do not suffer from cryptographic key “wear-out” that

occurs after heavy use. The main benefit is that rotation reduces risks that a compromised key

could be used for illegitimate purposes for an extended period, although this only holds true if

the attacker isn’t exploiting a persistent vulnerability that would provide access to new private

key versions.

Because the keyring captures this lifecycle information, our tools support deterministic DNS

record generation based on the keyring file state. The tool will output the precise DNS record

value to copy/paste into your DNS authoritative servers. Currently this is a manual process,

although we are investigating automation options to configure automatically pushing DNS

updates and/or enabling automated monitoring of DNS records being out-of-sync from your

keyring.

To avoid duplicating material in these draft documents, please see this section of the ads.cert

Open Source Implementation Design Doc for a walkthrough of the key generation tooling.

https://docs.google.com/document/d/1G-VxGmfdkP92jW4cwzudXWDftBOex-pztrgI-vj96VM/edit#heading=h.nd95n5vakj6a

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 10 of 11

Publish your public key in DNS

The key generation tool assembles the public key message you'll publish. Follow the in-app

instructions to create your new public key record or update an existing one.

You'll publish this record within a _delivery._adscert subdomain3 of your organization

identity domain. Follow the instructions in the keyring tool for the customized details regarding

what to publish.

Select a time-to-live (TTL) for the DNS record that will minimize unnecessary DNS fetches but

still let you rotate keys without introducing extensive delays. A 300 second (five minute) TTL

could be a reasonable starting point for initial testing, and this value might later be increased to

longer (e.g. 3600 seconds) after confirming that the configuration works as desired. Your keys

should not change frequently, so a longer TTL should be sufficient.

The ads.cert Open Source Implementation automatically fetches DNS records. While you

should be aware of the underlying protocols, it is not necessary to write your own code to

consume these records.

Publish delegation DNS records

If you will be receiving HTTP requests with signatures you want to verify, you will need to

publish a DNS record that reflects the domain which serves as the signing authority for the

domain receiving the request.

Earlier in this document, we provided an example URL (https://ads.ad-exchange.tk/...)

that will receive ad requests. To associate this domain with a signing authority domain, the

implementer publishes a record under the well-known subdomain name _adscert.ad-

exchange.tk that points to exchange-holding-company.ga as the proper signing

authority:

$ host -t TXT _adscert.ad-exchange.tk

descriptive text "v=adpf a=exchange-holding-company.ga"

Multiple “operational” domains of this nature can point to the same authority domain.

3 Naming not yet finalized

 ads.cert Open Source Software Implementer’s Guide

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 11 of 11

Testing your integration

Testing signers

Use the supplied integration testing server to receive sample requests from your QA or live

advertising environment and exercise the DNS records you publish. To facilitate testing, the

ads.ad-exchange.tk hostname resolves to 127.0.0.1, so invoking URLs using it will invoke

the test server running locally on your workstation.

$ host ads.ad-exchange.tk

ads.ad-exchange.tk has address 127.0.0.1

This also results in the software automatically discovering the keys published on the

exchange-holding-company.ga domain.

Testing verifiers

Use the supplied integration testing client to generate sample requests that will exercise the

DNS records you publish and submit HTTP requests to the URL you specify.

Monitoring your deployment

The ads.cert API provides feedback useful for monitoring in a few forms:

● The response message produced by the API provides structured feedback about the

operation’s outcome

● The implementer’s stub generates monitoring metrics that can be collected by the

organization’s monitoring systems

● The core signing and DNS crawl components collect exportable monitoring metrics

Choose the technique that works best for your organization. Review the design document for

more information on available metrics.

	Documentation links
	Introduction
	How ads.cert Authenticated Connections works
	The ads.cert open source software
	Implementation process
	Integrate the ads.cert OSS API
	Select your identification domain
	Generate your keyring file
	Publish your public key in DNS
	Publish delegation DNS records
	Testing your integration
	Testing signers
	Testing verifiers

	Monitoring your deployment

