

MRAID Best Practices
UPDATED JULY 2014
ORIGINAL RELEASED APRIL 2014

 MRAID Best Practices | 2

This document was developed and is maintained and updated by IAB’s MRAID Working Group.

 Contents

• Introduction
• Common Mistakes
• MRAID Creative Requirements

• Initializing/Starting an MRAID Ad
• Two-Part Expandable Ads
• Interstitial Ads
• Resizeable Ads
• Miscellaneous MRAID Features and Capabilities

• Debugging Tips
• SDK Vendor-Focused Requirements
• About the IAB MRAID Working Group

Introduction

This document provides best practices and guidelines for designers building MRAID creatives, as well
as clarifying requirements for implementing MRAID in containers/SDKs. Ambiguities in the MRAID 2.0
spec can lead to error prone creatives. We hope that this document will facilitate greater consistency
of use of MRAID, while clarifying any misinterpretations that have sprung up across different
development communities.

 MRAID Best Practices | 3

Common Mistakes

Networks and publishers supporting MRAID ads report seeing several common errors would-be
MRAID creatives. In some cases, these errors result in a creative performing correctly in some MRAID
containers but not in others, leading to confusion. Avoiding these errors will save time and maximize
the odds that a rich creative will work across all MRAID implementations.

Failure to add an MRAID ready event listener to the creative

This could cause the creative to start making MRAID calls before the container is finished loading the
MRAID libraries. This risks the creative asking the container for actions that the container is not yet
prepared for, breaking the ad and causing it to behave in ways the designer does not intend.

Not optimizing for mobile devices when designing views
For example, this snippet of HTML for can be put into the ad to make the creative scale to the screen
width. It controls the initial behavior of Webkit based browsers.

<meta name='viewport' content='width=device-width,initial-

scale=1,maximum-scale=1'>

Navigating away from the ad with a URL instead of calling mraid.open

As per the MRAID 2.0 Spec, hyperlinks must not be used with for MRAID ads. Hyperlinks are not
identified explicitly in MRAID and therefore MRAID-compliant containers will not treat hyperlinks in a
consistent, predictable way. Some may ignore them entirely, some may leave the app and open them
in the device’s native browser. For consistent, predictable behavior, stick to mraid.open().

“… ad designers should avoid using inline hyperlinks and window.location changes. mraid.open() is
the appropriate and correct way for an MRAID ad to specify that a link should open a page in a
separate browser. Loading a new web page in the ad view that is not written to the MRAID spec can
leave the ad, and possibly the app, in an unusable state.” - pg.25

Using 3rd party library bindings without using their ready event method
Third party libraries such as jQuery have a ready method which help facilitate a similar functionality

as the mraid ready event listener. In the example of jQuery, putting the DOM click bindings inside

of the ready(handler) method makes sure that the entire page has finished loading before

starting execution of any other jQuery functions.

http://www.iab.net/media/file/IAB_MRAID_v2_FINAL.pdf
http://jquery.com/
http://api.jquery.com/ready/

 MRAID Best Practices | 4

Binding to only DOM ready or only MRAID ready
If you are not using jQuery, you must still be aware that there are two ready states to your MRAID ad.
Binding your initialization to just the window.ready event ignores that the MRAID libraries may

not be available yet. Likewise, listening only for mraid.ready event ignores that the HTML DOM

may still be rendering. Be sure to check for both ready states – and maybe even isViewable --

before triggering initialization routines.

Inserting objects into the DOM in inappropriate locations.
Safari Mobile and iOS WebViews expect document.appendChild to be called on a specific

node, and doesn’t assume the body node otherwise. This means that if you would like to append a

node to the body(or any other node for that matter), it should be clearly specified in the Javascript call
as such: document.body.appendChild() . This is a common source for errors, as evidenced

in StackOverflow

Failing to wait for isViewable before starting in-creative actions and animations.
For many legitimate user-experience-related reasons, apps may load ads off screen or otherwise out of
the view of the end user. Most commonly this will happen to speed ad loads in cases with a page-style
user interface, where the consumer swipes to load new pages of content. Ads that may be served into
such environments should always check whether they are onscreen via MRAID’s isViewable()

method, before they begin any actions like animations. Not doing so risks the ad performs its bells
and whistles without the user being aware of them, or that the ad comes into view with the creative
partway through its behavior.

Misundertanding isViewable.

It’s important to listen for isViewable to make sure that creative knows when to initiate actions.

However it is also important to understand two limitations of isViewable . First, the MRAID spec
was developed before the rise of the viewable impression as a new currency for buying digital
advertising. As such, MRAID does not establish a specific definitional requirement for when an ad
container should consider that an ad has gone from ‘not viewable’ to ‘viewable,’ or the other way.
Creative designers, and ad servers should not attempt to use isViewable for the purposes of
impression counting.

Second, MRAID doesn’t require actions containers must take when the underlying app goes out of
focus or is suspended. That is, MRAID does not require that opening a browser window or moving
from one app to a different one should result in change to isViewable . The container as a whole
should suspend all activities while the app is in background, resuming them if the app returns to the
foreground. However, it may do so without an isViewable change to inform the ad that it was
hidden for a while.

http://stackoverflow.com/questions/1256394/what-exactly-can-cause-an-hierarchy-request-err-dom-exception-3-error

 MRAID Best Practices | 5

Attempting to resize or expand interstitials.
Interstitial ads in MRAID cannot change size and calls to mraid.resize() and

mraid.expand() will result in an error. This also means that the state of an interstitial is

default and NOT expanded . To hide the close button in the interstitial,

useCustomClose(true) should be the first action when the ready event fires.

Attempting to use expand() multiple times in a creative.
To maintain simplicity and prevent ads opening large numbers of views, MRAID ads can only
expand() once. If an ad is in an expanded state and attempts to call expand() again,

MRAID will ignore that second call. For creative needs involving multiple size changes, do not use
expand() at all. Use resize() instead.

Attempting to resize an expanded ad.
Similar to the previous point, ads in the expanded state cannot then call resize() to further

change size. If a creative calls mraid.expand() and then subsequently calls resize() from

the expanded state, the MRAID container will ignore the resize attempt.

Attempting to use open() rather than playvideo() for video URLs.
For platforms that do not reliably support the HTML5 video tag, you should use the
mraid.playVideo(url) method.Using mraid.open can cause unpredictable behaviors and should not be
used.

Missed opportunities to design ads for graceful degradation.
We see many examples of creatives where if an error happens they break totally when they don’t
have to. Designers should write MRAID ads such that if an error happens, the creative can try an
alternative path or behavior, rather than simply failing.

MRAID Creative Requirements

Where the previous section highlighted common errors, this section offers some concrete advice, both
for MRAID ads generally and for specific ad types supported by MRAID.

Initializing/Starting an MRAID Ad

• Always include or add “mraid.js” to the creative as early as possible. MRAID permits this
either by including a script tag in the HTML, or via DOM insertion. This is a requirement for a

 MRAID Best Practices | 6

creative to be a proper MRAID ad. Some ad designers assume that the container will
automatically inject the MRAID libraries (and some containers do actually do this) but the
script tag must always be included to ensure proper ad behavior in all MRAID
implementations.

o HTML technique

<html> <head> <script src="mraid.js"></script>

o DOM insertion technique

<script type="text/javascript">
 var head = document.getElementsByTagName('head').item(0),
 js = document.createElement('script'),
 s = 'mraid.js';
 js.setAttribute('type', 'text/javascript');
 js.setAttribute('src', s);
 head.appendChild(js);
</script>

• Start with the MRAID.addEventListener for ready as shown below. Put the rest of

the MRAID code in displayAd or similar initialization function. The state must be “ready”

before any MRAID APIs can be used. Failure to observe this requirement risks unpredictable
failures for the ad when it tries to use MRAID functionalities that are not yet available to it.

Occasionally the ready event is fired before the creative has an opportunity to register a
listener. Therefore using logic like this example represents a best practice.

function init() {
 var success = false;

 if (document.readyState === 'complete') {
 if (typeof mraid !== 'undefined') {
 if (mraid.getState() === 'loading') {
 mraid.addEventListener('ready', displayAd);
 } else if (mraid.getState() === 'default') {
 displayAd();
 }
 success = true;
 }
 }
 return success;

 MRAID Best Practices | 7

Two-Part Expandable Ads

• When creating 2-piece expandables the second “piece” must be a full HTML document and
cannot be an HTML snippet.

• Also in the case of 2-piece expandables, ad designers must include the mraid.js script tag
using the HTML method.

• Although the mraid.expand(url) method accepts a URL, using expand this way does
not count as a click through. The end-user is still within a single ad experience. Only
mraid.open(url) can be used to identify click through traffic.

Interstitial Ads

• An MRAID interstitial ad will include a close control and indicator, just like an expandable ad.
In the case of interstitials where the close indicator would disrupt the user experience (e.g.,
interstitial ads in a magazine-style “page-turning” user interface, ad designers may use
usecustomclose(true) on interstitial ads to suppress the default close indicator.

Resizeable Ads

• Be aware of how the creative is positioning itself within the container. Typically ad designers
will position the ad at the top left of the container. In such cases, a resizeable ad that moves
UP from the bottom of the screen will cause the banner to jump up to the new top-left corner of
the resized container. Ad designers should always specify how they are anchoring the
creative in the container, and to do so in such a way that the banner does not jump around the
screen.

• Except in special cases, ad designers should ensure that a resized ad continues to cover the
original banner space the default ad occupied.

• Except in special cases, ad designers should not use mraid.resize() to cover the full

screen area of the device. If the ad needs to change size to a full-screen area, use
mraid.expand() .

• Always use setResizeProperties before calling resize .

var resizeAd = function(){ var screenSize =

mraid.getScreenSize(); var resizeProperties = { "width":

screenSize.width, "height": screenSize.height/2, "offsetX": 0,

 MRAID Best Practices | 8

"offsetY": screenSize.height/10, "allowOffscreen": false }

mraid.setResizeProperties(resizeProperties); mraid.resize(); };

Miscellaneous MRAID Features/Capabilities

• When a creative is changing in several ways at once it is important to listen for both or all

change events before proceeding. Different MRAID implementations may fire these events in a
different order, so it is not safe to assume that one event firing means the sequence of activities
is completed.

• If the creative needs to request a size, for example after changing size via resize() , don’t

listen for a statechange event, listen for a sizechange event. Even if the size is changing due to
a statechange, listening for the sizechange event is more reliable and therefore the best
practice.

• Always call supports() before calling any specific MRAID feature like

createCalendarEvent and storePicture .

Debugging Tips
Developer Tools
For debugging JavaScript code, use the web debugging tools from browser vendors. One example of
these tools is Chrome Developer Tools. There a variety of other similar tools as well, like Safari
Developer Tools, and Firebug. Use the ‘Console’ section of the developer tools to get access to a live
JavaScript interpreter with the current context loaded. This enables you to test out existing functions
and add new things to the context to test. It can be also used for directing debugging logs to, from, or
within your functions.

Console Logs
For testing expected output and other general debugging, Console Logs can be used through the
function console.log() . There are various ways to format and output your messages to the

console, and the full details are outlined in the article Mastering Console Logging by Alex Young for
DailyJS

https://developers.google.com/chrome-developer-tools/docs/overview
https://developer.apple.com/technologies/safari/developer-tools.html
https://developer.apple.com/technologies/safari/developer-tools.html
http://getfirebug.com/
http://dailyjs.com/2012/02/02/console/
http://dailyjs.com/2012/02/02/console/

 MRAID Best Practices | 9

IAB MRAID WebTester
For testing creatives without an app, use IAB’s open source MRAID WebTester at
http://webtester.mraid.org/. This container is web-based and passes the IAB certification for MRAID
v2. Because this tool is browser-based, you can continue to use your developer tools when using the
WebTester.

In-App Testing
For testing creatives in-app, use tethering techniques for iOS and Android.

• Webplatform.org provides a useful overview of the many debugging resources available to
the mobile developer.
Instructions for remote debugging on Android devices can also be found at Google’s
Developers site.
This useful post at Prototest.com provides detailed instructions for enabling remote debugging
on both iOS and Android devices.

• Sometimes the usual remote debugging techniques will not work in-app, such as when
debugging code running in a third-party, production-release application, or when using older
iOS versions. In these cases, you can include the weinre libraries in your code to provide a
suite of debugging tools similar to those available in Google’s Chrome browser.

SDK Vendor-Focused Requirements
While the majority of this guide focused on advice for creative designers using MRAID, in some cases
problems making MRAID creative work are the fault of the SDK or container, not the creative designer.
The entire ecosystem benefits when MRAID implementations are uniform and consistent, and SDK
vendors reading this document should be aware of the following:

Pass the compliance test.

Vendors claiming MRAID v2 compliance must be able to prove their container correctly runs the IAB’s
official certification suite ads, the documentation and links to which are located at iab.net/mraid.
Providing consistent behavior is essential to maintaining a healthy ecosystem for vendors, clients, and
consumers. The compliance test was officially ratified by the IAB in July 2014, and vendors that were
previously certified as MRAID v2 compliant are or will soon be re-certified against the test.

Any vendor that has passed the official IAB test should have no problems with the notes called out
below; however, the following two items are meant to clarify points that may be ambiguous.

http://webtester.mraid.org/
http://docs.webplatform.org/wiki/concepts/mobile_web/mobile_debugging
https://developers.google.com/chrome-developer-tools/docs/remote-debugging
https://developers.google.com/chrome-developer-tools/docs/remote-debugging
http://prototest.com/guide-to-remote-debugging-ios-and-android-mobile-devices/
http://people.apache.org/~pmuellr/weinre/docs/latest/

 MRAID Best Practices | 10

Never fire an event before making the associated change.

An ad creative that requests a resize should be able to listen for a size change event as an indicator
that the container has successfully completed the requested change. That is, the container should
always complete a change and update any associated values before firing the associated event.

In the case of changes requested by an ad that result in multiple events being fired, MRAID does not
specify a particular required order for those events. However, vendors should ensure that all required
changes take place before firing the series of associated events.

Ensure containers report positioning reliably.

Vendors should take care that containers report creative positions accurately, particularly for
resizeable ads. Ad designers that believe their coding is right and yet the ad is not getting the right
values on a resize, should try using getcurrentposition/getdefaultposition to test where the
ad is and how it is being moved.

 MRAID Best Practices | 11

About the MRAID Working Group:

The IAB MRAID Working Group has worked over the past four years to develop MRAID versions 1
and 2 and currently works to raise awareness of, support for, and compliance with this important
industry specification. The MRAID Working Group is currently beginning efforts to collaborate with
IAB’s working groups managing the Video Suite and SafeFrame specifications to establish best
practices for understanding when to use each of those options, and how best to deploy them in
tandem to create rich, scalable ad experiences.

The MRAID Working Group includes representatives from the following
companies:

• 4th Screen Advertising
• AccuWeather.com
• AdMeld
• Adobe
• ADTECH
• Amazon.com
• AOL
• Celtra
• CNN.com
• Conversant Media
• Crisp Media
• ESPN
• FreeWheel
• Goldspot Media
• Google
• IDG
• ImServices Group
• InMobi
• Innovid
• Medialets

• Microsoft Advertising
• Millennial Media
• Mixpo
• Mocean Mobile
• NBC Universal Digital Media
• The New York Times Company
• Nexage
• Opera MediaWorks
• PointRoll
• PricewaterhouseCoopers
• Rhythm NewMedia
• Sizmek
• Spongecell
• Time Inc.
• Turner Broadcasting System
• Univision Communications Inc.
• Velti
• The Weather Channel
• Xaxis
• Yahoo!

IAB Contact Information:
Joe Laszlo, Senior Director, IAB Mobile Center
Mobile@iab.net

Acknowledgement: The original source material for this guide comes from a similar document
prepared by Millennial Media in 2013.

mailto:Mobile@iab.net

	Contents
	Introduction
	Common Mistakes
	Networks and publishers supporting MRAID ads report seeing several common errors would-be MRAID creatives. In some cases, these errors result in a creative performing correctly in some MRAID containers but not in others, leading to confusion. Avoidin...
	Failure to add an MRAID ready event listener to the creative
	Not optimizing for mobile devices when designing views
	Navigating away from the ad with a URL instead of calling mraid.open
	Using 3rd party library bindings without using their ready event method
	Binding to only DOM ready or only MRAID ready
	Inserting objects into the DOM in inappropriate locations.
	Failing to wait for isViewable before starting in-creative actions and animations.
	Misundertanding isViewable.
	It’s important to listen for isViewable to make sure that creative knows when to initiate actions. However it is also important to understand two limitations of isViewable. First, the MRAID spec was developed before the rise of the viewable impressi...
	Second, MRAID doesn’t require actions containers must take when the underlying app goes out of focus or is suspended. That is, MRAID does not require that opening a browser window or moving from one app to a different one should result in change to i...
	Attempting to resize or expand interstitials.
	Attempting to use expand() multiple times in a creative.

	To maintain simplicity and prevent ads opening large numbers of views, MRAID ads can only expand() once. If an ad is in an expanded state and attempts to call expand() again, MRAID will ignore that second call. For creative needs involving multiple ...
	Attempting to resize an expanded ad.
	Attempting to use open() rather than playvideo() for video URLs.
	Missed opportunities to design ads for graceful degradation.

	MRAID Creative Requirements
	Where the previous section highlighted common errors, this section offers some concrete advice, both for MRAID ads generally and for specific ad types supported by MRAID.
	Initializing/Starting an MRAID Ad
	Two-Part Expandable Ads
	Interstitial Ads
	Resizeable Ads
	Miscellaneous MRAID Features/Capabilities
	Debugging Tips
	Developer Tools
	Console Logs
	IAB MRAID WebTester
	In-App Testing

	SDK Vendor-Focused Requirements
	Pass the compliance test.
	Never fire an event before making the associated change.
	Ensure containers report positioning reliably.

