

Interactive Advertising Bureau

Mobile Rich-media Ad Interface
Definitions (MRAID) v.2.0

Released September 27, 2012,

Revised With Clarifications April 16, 2013

http://www.iab.net/

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 2 of 49
Final With Clarifications, April 16, 2013

Table of Contents

Table of Contents .. 2
Contributors ... 4
Acknowledgement .. 4
About MRAID .. 5
Executive Summary ... 5
Definitions .. 5
General Requirements for Supporting MRAID .. 7

Technical Audience ... 7
Native Application Developer .. 7
SDK Developer .. 8
Ad Designer ... 8

Viewport and Default Container Set-Up ... 8
Out of Scope ... 8
Standard Web Technologies .. 9
Ad Server Requirements .. 9
Requirements for Ad Rendering .. 9

Display of HTML Ads – Ad View Container .. 9
Requirements for Ad Designers... 10

Display Control for Rich Media Ads – Ad Controller .. 10
Lifecycle Examples .. 10
MRAID Versions .. 12

Interface Requirements and Definitions .. 13
Identification .. 13

MRAID script reference ... 14
Initialization ... 14

ready event .. 15
getVersion method ... 16

Initial Display ... 16
Event Handling .. 16

addEventListener method ... 16
removeEventListener method ... 17

Error Handling ... 17
error event .. 17

Controlling Ad Display .. 18
getState method, stateChange event .. 18
isViewable method, viewableChange event .. 21

Changing the Size of an Ad ... 23
Open: Open an External Mobile Web Site in a Browser Window 25

open method .. 25
Expand: Simple, Modal, Increase in Size of the Ad ... 26

expand method .. 26

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 3 of 49
Final With Clarifications, April 16, 2013

Controlling Expand Properties .. 28
getExpandProperties method .. 28
setExpandProperties method ... 29

Controlling Orientation Properties .. 29
getOrientationProperties method .. 30
setOrientationProperties method ... 30

Closing Expandable and Interstitial Ads .. 31
close method .. 32

Resize: Enables Sophisticated Ad Size Changes ... 33
resize method ... 33
Close Control for Resized Ads .. 34
getResizeProperties method .. 36
setResizeProperties method ... 36

Checking Position and Size of the Screen and Ad .. 37
getCurrentPosition method .. 37
getMaxSize method .. 37
sizeChange event .. 38
getDefaultPosition method ... 38
getScreenSize method ... 38

Offline Requests and Metrics .. 39
Access to Native Features... 39

supports method .. 39
Working with the Device's Physical Characteristics ... 40

Device Orientation ... 40
Storing a Picture .. 41

storePicture method ... 42
Creating Calendar Events ... 42

createCalendarEvent method.. 42
Working with Video .. 43

playVideo method ... 44
Appendix: W3C CalenderEvent Interface .. 45

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 4 of 49
Final With Clarifications, April 16, 2013

Contributors

The IAB MRAID Working Group includes representatives from the following companies:

24/7 Real Media, Inc.
AccuWeather.com
AdMarvel
AdMeld
ADTECH
Adobe Systems Inc.
AOL
CBS Interactive
Celtra
Crisp Media
Dow Jones & Company
ESPN
FreeWheel
Goldspot Media
Google
Greystripe
IDG
inMobi
Innovid
Jumptap

Medialets
MediaMind
Microsoft Advertising
Mixpo
Mocean Mobile
NBC Universal Digital Media
New York Times Co.
Nexage
Pandora
PointRoll
Rhythm NewMedia
Spongecell
Sprout
TargetSpot
Time Inc.
Turner Broadcasting System, Inc.
Univision
The Weather Channel
Yahoo!, Inc.

Acknowledgement

The IAB acknowledges the contributors to the ORMMA.org API project, which provided a
starting point for this document. ORMMA.org is a group of industry thought leaders who have
worked together since Spring 2010 to develop and test a complete and versatile mobile rich
media ad API. Contributors to ORMMA at the point the IAB launched the MRAID project
included:

Adam Schuetz, AdMarvel
Dennis Doughty, Jumptap
Jon Badenell, The Weather Channel
Nathan Carver, Crisp Media
Neal Karasic, Jumptap

Philippe Laporte, Goldspot Media
Robert Hedin, The Weather Channel
Todd Pasternack, Pointroll
Wook Chung, Google
Xavier Facon, Crisp Media

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 5 of 49
Final With Clarifications, April 16, 2013

About MRAID
The Interactive Advertising Bureau (“IAB”), its members and other significant contributors
joined together to create this document, a standard interface specification for mobile rich
media ads. The goal of the Mobile Rich-media Ad Interface Definition (MRAID) project is to
address known interoperability issues between publisher mobile applications, different ad
servers and different rich media platforms.

IAB Contact Information
Joe Laszlo, Senior Director, IAB Mobile Marketing Center of Excellence, mobile@iab.net

Executive Summary
As rich media display advertising in mobile applications and on the mobile web has become
more popular over the last several years, various innovative companies have accepted the
challenge of creating an ecosystem for mobile ad serving. Innovation in mobile rich media ad
serving has led to many exciting possibilities for content publishers and advertisers, but it has
also created inefficiencies that often delay and inhibit the optimal monetization of content.

Simplifying the process for designers of mobile in-app ad creatives significantly increases the
likeliness that agencies will leverage mobile into their media buys. Advertisers want to review
compelling creative, approve it and decide to buy a specific inventory of mobile media,
regardless of which device platform, application, or technology is used to display the media.

Definitions
The following terms are used throughout the MRAID specification.

Ad View/Container: The constrained area which displays the ad creative. Publishers
either place the Ad Container within the content (for inline placements) or over the content (for
interstitial placements) and present the ad creative. The container provides the area on the
screen, the MRAID controller, and the web-based view for the ad to display. Ad Containers
are usually, though not necessarily, provided by SDKs. An app may contain multiple Ad
Containers from a single SDK.

Close Event Region: The close event region is a tappable area on the ad creative that will
cause the ad to return to its default state (in the case of an expandable/resizeable ad) or be
removed from the screen (in the case of an interstitial).

Close Indicator: The close indicator is the visual cue to the user as to the location of the
close event region.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 6 of 49
Final With Clarifications, April 16, 2013

Controller: The JavaScript code that provides ad designers access to MRAID methods and
events. The ad creative uses the controller to perform advertising-related interactions with the
Ad Container, and, indirectly, with the application and the device.

Density-Independent Pixels: All length values passed between the container and the
creative through the MRAID API are in density-independent pixels.
Density-independent pixels are an abstraction from physical screen pixels meant to simplify
application and content development across devices of different screen densities.

Using density-independent pixels means that, for example, retina display iPhones and older
iPhones will return the same dimensions/measures, despite having different numbers of
physical pixels. 1 density-independent pixel corresponds rougly 1/160 of an inch (1 device
pixel on a device with roughly 160 DPI).

On iOS, these should map to “points”; on Android, to “density-independent pixels”.

Note: One density-independent pixel will match 1 CSS pixel only if the viewport scale is 1.0.
To map between CSS pixels and density-independent pixels, the creative should use the
following formula:

css_pixels * viewport_scale = density_independent_pixels

Inline Ad: An ad that appears onscreen accompanied by other kinds of content, e.g., a
banner on a web page or in an app.

Interstitial Ad: A full page modal ad that displays on top of content -- a "roadblock" or
"overlay." The ad must be dismissed for the user to return to the publisher content. Such ads
can appear between levels of a game, or before or after a video clip or other dynamic
content. (An ad that is in-between pages and swipes into view like in many magazine apps, is
considered an inline ad under MRAID.)

Physical Pixels: The actual pixels on a device screen. For example, a retina-display iPhone
measures 960x640 physical pixels. MRAID API length values are always calculated in
density-independent pixels (defined above) NOT physical pixels.

SDK: Sofware Development Kit. The reusable piece of code (library) integrated into
publisher apps to enable advertisements/Ad Containers. An SDK, by itself, is not a visual
component.

Web View: The HTML-based viewer that displays the ad creative. The web view is used to
perform rendering of HTML- and Javascript-enabled ads.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 7 of 49
Final With Clarifications, April 16, 2013

General Requirements for Supporting MRAID
This section details the requirements of an in-app ad-serving SDK that is MRAID compliant.

It is expected that an implementation would be in two parts. The first part defines a native
container for rich media ads to display in apps and the second part defines a JavaScript
controller for ad creatives to interact with. The native container encapsulates an HTML and
JavaScript enabled web view, such as iOS’s UIWebView, and the controller serves as a
bridge that can integrate HTML-based ads with the native capabilities. Actual implementations
may vary.

When planning, key design considerations are:

• Access to the device’s native features (orientation, location, acceleration, etc.) in a
consistent manner, where allowed by the app publisher/ad seller.

• Industry standard Ad development (HTML and JavaScript)
• Progressive complexity (simple things are simple, complex things are possible but

harder)

Techn ica l Au d ience
The specifications are technical by nature, but are not intended to limit innovation. This
document is intended for Publishers or SDK vendors and addresses the needs of the Ad
Designers.

Native Application Developer
There are no requirements in this specification for app developers. They should follow
the instructions provided by their SDK developer for integrating ads into their
application.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 8 of 49
Final With Clarifications, April 16, 2013

SDK Developer
SDK builders have a number of responsibilities outside this recommendation. (See “out-
of-scope.”) As mentioned, it is expected that the SDK developer will provide two
interfaces to implement these recommendations: a container for the native developer to
integrate via the SDK and a controller for the ad designer to use directly.

This document outlines the requirements of the controller needed by the ad designer. It
is the intention of the writers that these concepts can be managed with a facade layer
for existing SDKs.

Ad Designer
There are no creative requirements in this document for ad designers besides the use of
web standards. Ad designers who use the methods in this specification can provide
consumers with a rich media experience across platforms and publishers.

It is important for ad designers to recognize that calls to the native device must be
asynchronous by design. For most web developers, this is analogous to AJAX programming.

V iew por t and Defau lt Con ta iner Set -Up

Creative designers should be aware of the need to understand and potentially override the
default settings of the web view in which they are running. They should do this by querying an
MRAID container just as they would query a web page to understand the environment there.
These settings include height and width of the container, scale, and whether the user can
change the scale of the container.

While MRAID does not establish any new parameters or controls over the web view, it is
recommended that the creative should check and adjust the parameters, since the author of
said creative might wish to set them differently from the default container settings..

Ou t o f Scope
Each MRAID implementation provides unique features sets to developers. This document
outlines a minimum set of features for interoperability and does not define features that may
also be part of an SDK such as

• Retrieving the ad from Ad Server, Ad Network, or local resources
• Reporting
• IDE integrations
• Security / Privacy
• Internationalization
• Error reporting
• Logging

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 9 of 49
Final With Clarifications, April 16, 2013

• Billing and payments
• Ad dimensions and ad behavior1
• Downloading of assets to the local file system for caching or off-line use

Of course, the SDK developer must implement the ability to render web content in the area
intended for the ad unit. For most environments, this capability is already available as a web
view component although the developer may have to develop additional functions to support
these specifications.

It is the intent of the writers that vendors are not limited to delivering only the features outlined
in the API. They should continue to innovate and present features that differentiate them in the
marketplace. These other features must be implemented outside the MRAID namespace.

An ad that uses SDK-specific features in addition to MRAID features would not necessarily be
an MRAID ad anymore in the sense of working across all MRAID-compliant SDKs.

Standard Web Tech n o log ies
For interoperability, only web compatible languages should be used for markup and scripting
languages. This document assumes HTML/JavaScript/CSS. The ad designer should be able to
develop and test the ad unit in a web browser. If designers use tags, styles and functions which
are compatible with only one browser (such as CSS3 on WebKit), then the ad should be
targeted to compatible devices.

When newer web standards can provide consistency, ad designers are encouraged to use
them. This may include protocols like sms: and tel:, as well as some widely implemented
portions of the as-yet unfinished HTML5 specification. Designers need to be aware that in
these cases, the expected protocols and implementations may not be truly interoperable
across all devices and platforms.

Ad Ser v er R equ ir em en t s
The ad server used to traffic rich media ads should support HTML ads with JavaScript.

R equ ir em en t s fo r Ad R ender in g

Display of HTML Ads – Ad View Container
An MRAID-compatible container must display any HTML ad. The container should invoke an
HTML with JavaScript rendering engine for rendering ads. In this document, that engine will be
called the "web view". Whenever possible, the web view should incorporate the capabilities of

1 That is, MRAID does not define ad sizes (dimensions) or how ads should move or change in response to user
interaction.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 10 of 49
Final With Clarifications, April 16, 2013

the device web browser. For example, iOS developers may use UIWebView. A given App
view can have one or more ad view containers that will all act independently of one another.

R equ ir em en t s fo r Ad Des igner s

Display Control for Rich Media Ads – Ad Controller
An ad designer that expects his/her ad to make use of MRAID must indicate that by invoking
the mraid.js script as soon as possible as the ad loads. This signals the SDK to inject the
MRAID javascript into the creative.

MRAID remains in the background, leaving the ad designer in control of the ad display, but is
available so that the creative can use the MRAID API when/if the ad needs to access MRAID
features and functionalities. The internal interaction between the creative and the rich media
SDK is hidden from both the Ad designer and the App developer.

An ad that does not utilize any device features does not need to use the MRAID API at all.
However if the ad does not invoke MRAID, it will get the SDK’s default solution. Some of the
things an ad uses MRAID’s API for are:

• Opening an embedded web browser
• Detecting whether the ad is viewable or not
• Expanding an ad that grows from a banner to a larger size
• Clicking within an ad triggering an action

Ad designers are encouraged to rely on MRAID’s capabilities to achieve the above effects.

L ifecy cle Ex am ples

Simple Ad Lifecycle Example
Non-rich-media ads (e.g., basic banners) can optionally invoke MRAID. If the ad does not
invoke MRAID via the mraid.js script tag, then it will behave however the application/SDK
normally handles such ads.

Ad designers may wish for such simple HTML ads to invoke mraid.js, if they want to use the
MRAID-standard container rather than the SDK’s default container. In that case, the ad
designer should make sure to use mraid.open() for any links to ensure consistent behavior.

Lifecycle of an MRAID Expandable Ad Example
In a rich media ad lifecycle example, the Ad Designer uses the JavaScript API to communicate
with the native layer and interact with features of the device and OS.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 11 of 49
Final With Clarifications, April 16, 2013

As an example, when the user touches the ad, the ad uses the MRAID API to request that the
ad can expand. The SDK should (though this is not part of the MRAID specification) notify the
app that the ad is expanding so that it can stop anything that the user will not be able to
interact with. The SDK then resizes the web view to take up the entire screen of the device or
the full size of the expanded ad. The container reserves a space at the top right corner of the
expanded ad container for an MRAID-enforced close event region, and will either supply the
close indicator or, if the ad specifies, will allow the ad to supply the indicator in creative.

When the user is done with the expanded ad, they click a close button that causes the ad to
resize to its original size, display the ad’s banner state, and notify the app that it can resume.

Lifecycle of an MRAID Interstitial Ad

The case of an interstitial ad is very similar. The ad can use the MRAID API to query the
container as to whether it is visible onscreen or not, waiting until it is on before it takes other
actions. As with an expandable, the container reserves a space at the top right corner of the
expanded ad for an MRAID-enforced close event region, and will either supply the close
indicator or, if the ad specifies, will allow the ad to supply the indicator in creative. When the
user is done with the interstitial, they can tap the close button, which in this case changes the
ad’s state to “hidden,” unregisters any event listeners, and notifies the app to resume.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 12 of 49
Final With Clarifications, April 16, 2013

MR AID V er s ion s

The adoption of MRAID throughout the ad community is a high priority and essential for the
success of mobile rich media advertising across platforms. For this reason, IAB is releasing the
full feature set of MRAID in versions. This will allow SDK vendors to meet the compliance
standards of the MRAID API in a consistent way and prevent possible fragmentation inherit in
implementing only a portion of the standard.

Maintaining full backwards compatibility in MRAID is a key goal of this project. An MRAID
2.0-compliant SDK should be able to run an MRAID 1.0 ad with no problems whatsoever, and
an MRAID 1.0-compliant SDK should be able to handle the MRAID 1.0-compliant features of
an MRAID 2.0 ad.

In establishing both versions of MRAID, the IAB and its MRAID working group have focused
on six key goals:

• High interoperability – ads developed to run in one MRAID container can run on
MRAID containers of multiple platforms and operating systems.

• Graceful degradation – ads developed to take advantage of all the MRAID
features also have the capacity to downgrade gracefully as needed. This will be
especially important as gaining access to device functionalities becomes part of
MRAID’s scope in the future.

• Progressive complexity – ad design using the API should be simple, adding
complexity only as necessary.

• Consistent means for ads to change size and/or open new pages,
preferably in an embedded browser –MRAID provides ads a consistent way
to communicate with rich media SDKs regarding their need to expand, and open an
app’s embedded browser (or in the native browser if an embedded browser does not
exist).

• Consistent means for a consumer to exit an ad – MRAID ads will always
have a consistent control by which a user can indicate that they wish to exit out of the
ad experience and return to the app/content they were in.

• Flexibility for publishers – although MRAID-compliant SDKs must support all
MRAID capabilities, app publishers/ad sellers are free to allow or disallow ads that
make use of the features MRAID enables. That is, MRAID enables rich media ad
features, but does not dictate that all sellers of rich media ads must support all those
features.

Version 1
The methods and events included in MRAID Version 1 provide a minimum level of
requirements for rich media ads, primarily to display HTML ads that can change size in a fixed
container (e.g., expand from banner to larger/full screen size), and interstitial ads.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 13 of 49
Final With Clarifications, April 16, 2013

Version 2
MRAID Version 2 extends the capabilities of MRAID Version 1 to give ad designers more
control over expandable ads, and provides a new method, resize() that permits more subtle
and interesting size changes in ad creatives as well.

In addition, MRAID v.2 provides a standard way to query a device regarding certain
capabilities, offers consistent handling of video creative, and addresses two native capabilities
not well implemented by HTML5 at present: adding an entry to the device calendar and
storing an image in the device photo roll.

For examples of ads that can be developed using the MRAID Version 2 API, please see the
addendum.

Interface Requirements and Definitions
This list outlines all the methods and events that ad designers will have access to under MRAID
v2.0. Methods and events new in MRAID v2.0 (e.g., that were not in MRAID v1) are
indicated by an asterisk below.

Methods
• addEventListener
• createCalendarEvent*
• close
• expand
• getCurrentPosition*
• getDefaultPosition*
• getExpandProperties
• getMaxSize*
• getPlacementType
• getResizeProperties*
• getScreenSize*
• getState

• getVersion
• isViewable
• open
• playVideo*
• removeEventListener
• resize
• setExpandProperties
• setResizeProperties*
• storePicture*
• supports*
• useCustomClose

Events

• error
• ready
• sizeChange*

• stateChange
• viewableChange

Iden t if ica t ion
It is required that ads identify themselves as being MRAID compliant. This is done by adding
an MRAID script reference as soon as possible the creative and well before any MRAID

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 14 of 49
Final With Clarifications, April 16, 2013

functions are referenced in the creative. In other words, the MRAID identification script
reference must be identifiable as soon as possible by any MRAID-compliant container or SDK.

MRAID script reference
The MRAID tag follows HTML Javascript syntax so that both fully formed web pages and
HTML fragments can be identified as MRAID ads. mraid.js will be included as a script in the
document either using an HTML tag or as javascript. MRAID sample ads (see
www.iab.net/mraid) illustrate where the script tag should be positioned.

<script src="mraid.js"></script>

While MRAID ads need to identify themselves as such via the mraid.js script in a timely fashion
so that the container can inject the MRAID libraries, ad designers should avoid using the string
“mraid.js” for any other purpose in an ad creative, as doing so may lead containers/SDKs to
mistakenly inject multiple copies of the MRAID libraries.

In it ia liza t ion
MRAID governs interactions between the ad and the container and identifies the container as
compatible with these specifications. Ad designers must include the JavaScript identification
reference for MRAID, but the actual JavaScript libraries are supplied by the container, and it is
the responsibility of the container to ensure they are available to the ad in a timely fashion
after the script reference is made, and to signal as such by firing the ready event.

The following summarizes step-by-step the actions that the ad and MRAID container take in the
initial loading of the ad and the injection of MRAID API libraries.

1. Ad identifies itself as MRAID as early as possible by invoking MRAID script tag.
<script src="mraid.js"></script>

2. SDK/MRAID-compatible Container

a. Optionally detects the script call

b. Always provides the MRAID JavaScript bridge for MRAID ads

c. Provides limited MRAID object with an MRAID State = “loading” and the
ability to query the state

3. If the ad uses createElement, needs to wait for mraid.js to finish loading

4. If MRAID State=”loading” then ad listens for “ready” event with
mraid.addEventListener('ready')

5. SDK/Container finishes initializing MRAID library into the webview

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 15 of 49
Final With Clarifications, April 16, 2013

a. Changes the MRAID state to “default” and the StateChange Event is triggered

b. Fires the MRAID “ready” event

6. Ad's "ready" event listener is triggered and ad JavaScriptcan now use the MRAID APIs

ready event
The ready event triggers when the container is fully loaded, initialized, and ready for any calls
from the ad creative.

It is the responsibility of the MRAID-compliant container to prepare the API methods before the
ad creative is loaded. This prevents a condition where the ad cannot register to listen for the
ready event because the API methods are unavailable. While the container may load all of
MRAID at once, at a minimum the container must be prepared to support the getState and
addEventListener capabilities as early as possible in the ad loading process; otherwise there
will be no way for the ad to register for the ready event. In the event that the container may
still need more time to initialize settings or prepare additional features, ready should only fire
when the container is completely prepared for any MRAID request.

The ad should always attempt to wait for the ready event before executing any rich media
operations. Because of timing issues, such as the ready event firing before the ad has
registered to listen, ad designers should use the ready event in conjunction with the getState()
method.

Example

function showMyAd() {
 ...
}

if (mraid.getState() === 'loading') {
 mraid.addEventListener('ready', showMyAd);
} else {
 showMyAd();
}

“ready”
parameters:
• none
side effects:
• MRAID JavaScript library available to ad unit
return values:
• none
event triggered:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 16 of 49
Final With Clarifications, April 16, 2013

• none

getVersion method
The getVersion method allows the ad to confirm a basic feature set before display. This version
number must correspond with the MRAID version specification (e.g., 1.0 or 2.0) and not the
vendor’s SDK version.

getVersion() -> String
parameters:
• none
return values:
• String – the MRAID version that this SDK is certified against by the IAB, or that this

SDK is compliant with. For example, for the current version of MRAID, getVersion()
will return “2.0.”

In it ia l Disp lay
It is up to the ad designer to provide simple HTML, such as an tag, for the initial display
of their ad while other assets are loaded in the background. This HTML will be displayed in the
Container while JavaScript uses the Controller to request and invoke additional capabilities.
Ultimately, the initial HTML display may be completely replaced by a rich media ad once all
assets are ready, depending on the creative requirements.

Ev en t Hand lin g
Event handling is a key concept of MRAID. Communicating between the web layer and native
layer is asynchronous by nature. Through event handling, the ad designer is able to listen for
particular events and respond to those events on an as-needed basis. MRAID advocates
broadcast-style events to support the broadest range of features/flexibility with the greatest
consistency.

The controller exposes these methods.

addEventListener method
Use this method to subscribe a specific handler method to a specific event. In this way, multiple
listeners can subscribe to a specific event, and a single listener can handle multiple events. An
ad may register for more than one listener at a time, and it is required that ads be permitted to
do so. The events supported by MRAID v.2 are:

value description
ready report initialize complete
error report error has occurred

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 17 of 49
Final With Clarifications, April 16, 2013

stateChange report state changes
viewableChange report viewable changes
sizeChange report a change in size of the ad

addEventListener(event, listener)
parameters:
• event – string, name of event to listen for
• listener – function to execute
return values:
• none
side effects:
• none

removeEventListener method
Use this method to unsubscribe a specific handler method from a specific event. Event listeners
should always be removed when they are no longer useful to avoid errors. If no listener
function is specified, then all functions listening to the event will be removed.

removeEventListener(event, listener)
parameters:
• event – string, name of event
• listener – function to be removed
return values:
• none
events triggered:
• none

Er r o r Hand lin g
When an error in the container occurs, the "error" event is triggered with diagnostic information
about the event. Any number of listeners can monitor for errors of different types and respond
as needed.

error event
This event is triggered whenever a container error occurs. The event contains a description of
the error that occurred and, when appropriate, the name of the action that resulted in the error
(in the absence of an associated action, the action parameter is null). JavaScript errors remain
the full responsibility of the ad designer.

“error” -> function(message, action)
parameters:
• message: String, description of the type of error

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 18 of 49
Final With Clarifications, April 16, 2013

• action: String, name of action that caused error
triggered by:
• anything that goes wrong

Ad designers should note that errors can be handled on either a synchronous or an
asynchronous basis by the SDK/container.

While the “message” part of the error event is not defined by the MRAID specification and
mainly intended for pre-flight debugging of creative, the “action” part of the error is always the
name of the method that the ad tried to use that led to the error. In principle, any MRAID
method may trigger an error, so ad designers using an error event listener should listen for the
following as potential error actions:

• addEventListener
• createCalendarEvent
• close
• expand
• getCurrentPosition
• getDefaultPosition
• getExpandProperties
• getMaxSize
• getPlacementType
• getResizeProperties
• getScreenSize
• getState

• getVersion
• isViewable
• open
• playVideo
• removeEventListener
• resize
• setExpandProperties
• setResizeProperties
• storePicture
• supports
• useCustomClose

While any MRAID method may lead to an error, in practice using resize, adding an image to
a device’s photo album or adding an event to a calendar are the most likely MRAID methods
to generate errors. Ad designers using those methods should be particularly diligent about
adding an error listener to check whether an error occurs on a resize, storePhoto, or
createCalendarEvent action, so that the ad creative can potentially take a different action.

Con t r o llin g Ad Disp lay
Besides the initial display, the ad designer may have a number of reasons to control the
display.

• An application may load views in the background to help with latency issues so that
an ad is requested, but not visible to the user.

• The ad may expand beyond the default size over the application content.
• The ad may return to the default size once user interaction is complete.

getState method, stateChange event
Each ad container (or Webview) has a state that is one of the following:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 19 of 49
Final With Clarifications, April 16, 2013

value description
loading the container is not yet ready for interactions with the MRAID implementation

default
the initial position and size of the ad container as placed by the application and
SDK

expanded
the ad container has expanded to cover the application content at the top of the
view hierarchy

resized the ad container has changed size via MRAID 2.0’s resize() method

hidden
the state an interstitial ad transitions to when closed. Where supported, the state
a banner ad transitions to when closed

The getState method returns the current state of the ad container, returning whether the ad
container is in its default, fixed position or is in an expanded or resized, larger position, or
hidden.

The stateChange event fires when the state is changed programmatically by the ad or by the
environment. This event is triggered when the Ad View changes between default, expanded,
resized, and hidden states as the result of an expand(), resize(), or a close(). The container or
SDK may also close an ad as the result of a user or system action, such as resuming from
background.

Any MRAID ad can have only one state at a time. In the case of two-part expandable ads,
this requirement means there is only one state for both web views. For as long as the
expanded view is onscreen, using getState() will return “expanded.”

The effect on state from calling expand(), resize(), and close() are defined in this table.

How to read: the initial state of the creative is in the left-most column; how the state changes
when an MRAID method is used can be found by looking down the column for that method.
So for example, if the ad’s state is “expanded” and the close() method is used, the ad’s state
changes to “default.”

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 20 of 49
Final With Clarifications, April 16, 2013

Initial
state

expand() resize() close()

loading no effect no effect no effect
default For a banner, state

changed to
“expanded”
For an interstitial,
no effect

For a banner, state
changed to “resized”
For an interstitial, no
effect

For a banner,
state changed
to “hidden” (if
supported by
SDK/container)
For an
interstitial, state
changed to
“hidden”

expanded no effect (state
remains
“expanded”)

triggers an error; state
remains “expanded”

state changed
to “default”

resized state changed to
“expanded”

state changed to
“resized” (that is, an
event listener will hear a
new stateChange event,
even though the state is
still “resized” after the
event fires)

state changed
to “default”

hidden no effect no effect no effect

In the case of a two-piece expandable, the new, expanded web view starts in the “loading”
state briefly until MRAID is available, upon which the “ready” event is fired and the state of the
ad then transitions to “expanded.” The banner (the first piece) of the two-piece ad also
changes its state, from “default” to “expanded.”

For an interstitial ad, the web view goes from “loading” to “default,” and when the interstitial is
closed, the state changes to “hidden.”

getState() -> String
parameters:
• none
return values:
• String: "loading", "default", "expanded”, “resized,” or “hidden”
related events:
• stateChange

“stateChange” -> function(state)
parameters:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 21 of 49
Final With Clarifications, April 16, 2013

• state - String, either "loading", "default", "expanded", “resized”, or “hidden”
triggered by:
• expand, close, or the app

getPlacementType() method

For efficiency, ad designers sometimes flight a single piece of creative in both banner and
interstitial placements. So that the creative can be aware of its placement, and therefore
potentially behave differently, each ad container has a placement type determining whether
the ad is being displayed inline with content (i.e. a banner) or as an interstitial overlaid content
(e.g. during a content transition). The container returns the value of the placement to creative
so that creative can behave differently as necessary. The container does not determine
whether a banner is an expandable (the creative does) and thus does not return a separate
type for expandable.

value description
inline the default ad placement is inline with content in the display (i.e. a banner)
interstitial the ad placement is over laid on top of content

getPlacementType should always return the placement that it initially displayed in. That is, in
the case of two-part expandables, the second, expanded part should also see “inline” if it
does a getPlacementType.

getPlacementType() -> String

parameters:
• none
return values:
• String: "inline", "interstitial"
related events:
• none

isViewable method, viewableChange event
In addition to the state of the ad container, it is possible that the container is loaded off-screen
as part of an application's buffer to help provide a smooth user experience. This is especially
prevalent in apps that employ scrolling views or in interstitial ads, for example between levels
of a game.

The isViewable method returns whether the ad container is currently on or off the screen. The
viewableChange event fires when the ad moves from on-screen to off-screen and vice versa.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 22 of 49
Final With Clarifications, April 16, 2013

For a two-piece expandable ad, when the ad state is expanded, isViewable will return an
answer based on the viewability of the expanded piece of the ad.

In any situation where an ad may be loaded offscreen, it is a good practice for the ad to
check on its viewable state and/or register for viewableChange before taking any action.

Note that MRAID does not define a minimum threshold percentage or number of pixels of the
ad that must be onscreen to constitute “viewable.”2

isViewable() -> boolean
parameters:
• none
return values:
• boolean - true: container is on-screen and viewable by the user; false: container is off-

screen and not viewable
related events:
• viewableChange
•

“viewableChange” -> function(boolean)
parameters:
• boolean - true: container is on-screen and viewable by the user; false: container is off-

screen and not viewable
triggered by:
• a change in the application view controller

Below is an example of an ad that takes into account both “Ready” and “isViewable” before
taking action.

// Wait for the SDK to become ready
if (mraid.getState() === 'loading') {
 mraid.addEventListener('ready', onSdkReady);
} else {
 onSdkReady();
}

function onSdkReady() {
 // Wait for the ad to become viewable for the
first time
 if (mraid.isViewable()) {
 showMyAd();
 } else {
 mraid.addEventListener('viewableChange',
function(viewable) {

2 The IAB currently has a project underway to establish guidelines for in-app ad measurement, potentially
including a viewability threshold, is currently underway within the IAB.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 23 of 49
Final With Clarifications, April 16, 2013

 if (viewable) {
 mraid.removeEventListener('viewab
leChange', arguments.callee);
 showMyAd();
 }
 });
 }

}
function showMyAd() {
 ...
}

Ch an gin g th e Size o f an Ad

MRAID v2 includes three distinct ways for an ad to change its size. By far the simplest is to
use the open() method, which is intended for click-throughs where an entire web site is loaded
in a new browser window (generally this will be a browser running within the app, but it may
be the device’s native browser).

The expand() method is intended for ads that expand in a fairly simple, straightforward way to
cover the content of the application.

In addition to these, the resize() method is intended for ads that grow or shrink in more subtle
ways, in a dialogue with the app in which it is running. This method allows designers complete
freedom and control – with the trade-off that additional methods and listeners are required for
both the ad creative and the app/container to react appropriately in different placements.

Differences between resize(), expand(), and open()
Although these methods are related, they promote an approach of progressive complexity.
That is, simple operations should be simple, but sophisticated efforts are still be possible.
Understanding the distinction between resize(), expand() and open() helps ad designers
choose the best method for their needs.

open()

• lowest common denominator
• used for advertiser landing pages or microsites
• opens a new URL, generally in a browser window within the app, however may open

in the device’s native browser
• always full screen
• no additional properties

expand()

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 24 of 49
Final With Clarifications, April 16, 2013

• simple interface
• maintains ad experience
• full screen
• few additional properties
• support for one-part or two-part creatives
• MRAID-enforced tap-to-close area in fixed (top right) location
• relative alignment for creatives

resize()

• flexible interface
• continuous, non-modal ad experience
• no default values, can change to larger or smaller sizes
• additional properties and methods required
• one-part creatives only
• MRAID-enforced tap-to-close area, but ad designer can change the close area’s

position within the creative area.
• absolute positioning possible
• supports direction of resizing

This table summarizes the differences between these methods.

property open() expand() resize()
modal Y Y N
MRAID-enforced close control N Y Y
viewer stays within ad experience N Y Y
two-part creatives n/a Y N
one-part creatives n/a Y Y
aligned to screen n/a Y N
background provided for small creatives n/a Y N
size up n/a Y Y
size down n/a N Y
app-defined max area n/a N Y
callback required to complete n/a N Y
supports directionality n/a N Y
creative can control position of resized ad n/a N Y
app can return to default state n/a N Y

In MRAID 2.0 the creation of partial-screen non-modal expansions requires using the resize()
method. The deprecation of the expand property “isModal” is reflected in this usage chart.
Under MRAID 2.0, calling expand() using expanded creative that is smaller than the size of
the full screen requires the container web view blank out, cover, or otherwise obscure the
underlying app to make it very clear to the end user that the expanded ad is modal in nature.
In that sense, modal, partial screen ads are not allowed in MRAID 2.0.

 Modal Non-modal

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 25 of 49
Final With Clarifications, April 16, 2013

Full Screen OK - Use expand() Not possible

Partial Screen Not possible OK - Use resize()

Open : Open an Ex te rn a l Mob ile Web Site in a Brow ser Window
If the ad needs to open an external mobile web site, or micro site, from an MRAID ad, it can
call the open method which will open a browser window to view the external HTML content.
Wherever possible, this will be via an embedded browser in the application.

open method
The open method will display an embedded browser window in the application that loads an
external URL. On device platforms that do not allow an embedded browser, the open method
invokes the native browser with the external URL.

Note: This should be used only for external web pages that are not MRAID ads. The displayed
page will not load the app’s MRAID-compliant SDK and so the close method will not have any
effect on the embedded browser. It can only be closed by the user selecting the close control
for the window, which is implementation specific.

Use this method to open an HTML browser to an external web page. This may launch an
external browser, depending on the implementation. To remain within an MRAID ad
experience, use the expand() method instead.

The native browser controls – back, forward, refresh, close – will always be present. For
reporting, open() may be used by SDK vendors as a reportable event.

open(URL)
parameters:
• URL - String, the URL of the web page
return values:
• None

Hy per lin k s
When the user clicks on an HTML hyperlink (defined by an tag) in an MRAID ad,
there are two possibilities: the linked page could load in the existing ad web view, or the
content could open a separate browser window and load the indicated HTML link there.
MRAID-compliant SDKs can opt for either strategy, so ad designers should avoid using inline
hyperlinks and window.location changes. mraid.open() is the appropriate and correct way for
an MRAID ad to specify that a link should open a page in a separate browser. Loading a new
web page in the ad view that is not written to the MRAID spec can leave the ad, and possibly
the app, in an unusable state.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 26 of 49
Final With Clarifications, April 16, 2013

Hand lin g Ca ll- t o -Act ion Ev en t s
A rich media ad implements multiple call-to-action events beyond the tap to microsite. These
events may be executed as anchor links or scripted functions. This means a container or SDK
cannot just listen for taps in the browser. It must support programmatic taps/clicks (e.g.,
window.location changes) as well.

Ex pand : Sim p le , Moda l, In cr ease in Size o f t h e Ad

For ad creative that changes size in a relatively simple manner, typically expanding from
banner to full-screen size, the expand method provides a simple way to communicate this to
the container.

expand method
The expand method will cause an existing web view (for one-part creatives) or a new web
view (for two-part creatives) to open at the highest level (e.g., at a higher z-index value than
any app content) in the view hierarchy. The expanded view can either contain a new HTML
document if a URL is specified, or it can reuse the same document that was in the default
position. While an ad is in an expanded state, the default position will generally be obscured
or inaccessible to the viewer, so the default position should take no action while the expanded
state is available. Thus a complete implementation allows for ad designers to use one-part ads
(where the banner and panel are part of one creative) and two-part ads (where the banner
and panel are separate HTML creatives).

The expand method may change the size of the ad container, and will move state from
"default" or “resized” to "expanded" and fire the stateChange event. In the case of both one-
piece ads and two-piece ads, calling expand() multiple times will be ignored, and multiple
expand calls have no effect on state (which remains “expanded”).

An expanded view must cover all available screen area even though the ad creative may not
(e.g. via a transparent or opaque overlay). The expanded ad is always modal, and naturally
the container should prevent new ads from loading during the expand state so that the user
can complete any desired interactions with the ad creative without interruption. Other
application-specific difficulties such as poorly built apps with multiple window objects, or timers
that change the content z-order, must be considered by vendors when implementing the
expand method.

An expanded view must provide an end-user with the ability to close the expanded creative.
These requirements are discussed further in the description of closing expandable and
interstitial ads, below.

Placement of the expanded ad on screen, especially when the expanded view can be placed
in multiple locations, is left to the ad designer. For full-screen expands, all MRAID compliant
SDKs will grant the full device screen space and will position the ad so it is fully visible.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 27 of 49
Final With Clarifications, April 16, 2013

When the ad size is greater or smaller than the screen size of the device, the SDK will size the
web view to be identical to the maximum size allowed by t device and app. The creative will
not be scaled down or up to the size of the device’s screen; rather it will be up to the ad
creative to position itself appropriately within the expanded web view via CSS.

When the expand method is called without the URL parameter, the current view will be reused,
simplifying reporting and ad creation. The original creative is not reloaded and no additional
impressions are recorded. Implementing this definition allows for one-part creatives.

When the expand method is called with the URL parameter, a new view will be used.
Implementing this definition allows for two-part creatives. When a two-part expandable is
used, the second part (pointed to by the URL) must always be a complete HTML page (not a
snippet/fragment), and must separately request mraid.js from the SDK/container (assuming it
needs MRAID). Whether the expanded part of the ad requests mraid.js or not, the container
will always supply the close control and (optionally, depending on how expandProperties are
set) the close indicator.

expand([URL])
parameters:
• URL (optional): The URL for the document to be displayed in a new overlay view. If null

or a non-URL parameter is used, the body of the current ad will be used in the current
webview.

return values:
• none
events triggered:

stateChange

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 28 of 49
Final With Clarifications, April 16, 2013

Con t r o llin g Ex pand P roper t ies
The expand properties object is intended to provide additional features to ad designers.
Expand properties that can be set by the ad designer are limited to the width and height of the
ad creative, and whether the creative is supplying its own close indicator. The
expandProperties are held in a JavaScript object that can be written and read by the ad. Ad
designers can also control the orientation of an expandable ad via orientation properties, set
separately.

Expand properties can only be set BEFORE the ad calls expand(). Changes after the ad is in
its expanded state will be ignored.

expandProperties object = {
 “width” : integer,
 “height” : integer,
 “useCustomClose” : boolean,
 “isModal” : boolean (read only)
}

properties:
• width : integer – width of creative, default is full screen width.
• height : integer – height of creative, default is full screen height. Note that when

getting the expand properties before setting them, the values for width and height will
reflect the actual values of the screen. This will allow ad designers who want to use
application or device values to adjust as necessary.

• useCustomClose : boolean – true, container will stop showing default close graphic
and rely on ad creative’s custom close indicator; false (default), container will display
the default close graphic. This property has exactly the same function as the
useCustomClose method (described below), and is provided as a convenience for
creators of expandable ads.

• isModal : boolean – true, the container is modal for the expanded ad; false, the
container is not modal for the expanded ad; this property is read-only and cannot be
set by the ad designer. Note that while this could be false in MRAID 1.0, in MRAID
v2.0 will always return “true.”

getExpandProperties method
The getExpandProperties method returns the whole JavaScript Object expandProperties object.

Use this method to get the properties for expanding an ad.

getExpandProperties() -> JavaScript Object
parameters:
• none
return values:
• { ... } - this object contains the expand properties

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 29 of 49
Final With Clarifications, April 16, 2013

events triggered:
• none

setExpandProperties method
The setExpandProperties method sets the whole JavaScript object.

setExpandProperties(properties)
Use this method to set the ad's expand properties, including the maximum width and height of
the ad creative.

parameters:
• properties: JavaScript Object { ... } - this object contains the width and height of the

expanded ad. For more info see properties object.
return values:
• none
events triggered:
• none

Con t r o llin g Or ien ta t ion P roper t ies
The orientation properties object is intended to provide ad designers with additional control
over expandable and interstitial ads. The orientationProperties are held in a JavaScript object
that can be written and read by the ad. The orientationProperties object only affects the
expanded state of an expandable ad, or an interstitial ad. A banner in its default state cannot
use orientationProperties to prevent the app from reorienting or force the app to switch to a
different orientation layout. Resizeable ads can use orientationproperties, but they won’t have
any effect.

orientationProperties object = {
 "allowOrientationChange" : boolean,
 "forceOrientation" : "portrait|landscape|none"
}

• allowOrientationChange : boolean -- If set to “true” then the container will permit
device-based orientation changes; if set to false, then the container will ignore device-
based orientation changes (e.g., the web view will not change even if the orientation
of the device changes). Default is “true.” The ad creative is always able to request a
change of its orientation by setting the forceOrientation variable, regardless of how
allowOrientationChange is set.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 30 of 49
Final With Clarifications, April 16, 2013

• forceOrientation : string – can be set to a value of “portrait,” landscape,” or “none.”
If forceOrientation is set then a view must open in the specified orientation, regardless
of the orientation of the device. That is, if a user is viewing an ad in landscape mode,
and taps to expand it, if the ad designer has set the forceOrientation orientation
property to “portrait” then the ad will open in portrait orientation. Default is “none.”

To enable finer control over ad behavior, an ad designer can change the setting of either of
the orientation properties after the ad is in an expanded state. This way an ad may start in
portrait but instruct the user to change orientation to play a game. The game requires tilting so
no orientation changes should be allowed until the user is done. MRAID-compliant SDKs must
be able to accept changes to expand properties throughout a user’s interaction with an
expandable ad.

For example:

mraid.setOrientationProperties (
{"allowOrientationChange":true});
mraid.expand()

/* user changes to landscape, starts game */
mraid.setOrientationProperties ({"allowOrientationChange":
false });

/* user is done with game */
mraid.setOrientationProperties (
{"allowOrientationChange":true});

getOrientationProperties method
The getOrientationProperties method returns the whole JavaScript object orientationProperties
object.

Use this method to get the properties for the orientation of the expanded part of an
expandable, or an interstitial ad.

getOrientationProperties() -> JavaScript Object
parameters:
• none
return values:
• { ... } - this object contains the orientation properties
events triggered:
• none

setOrientationProperties method
The setOrientationProperties method sets the JavaScript orientationProperties object.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 31 of 49
Final With Clarifications, April 16, 2013

setOrientationProperties(properties)
Use this method to set the ad's orientation properties.

parameters:
• properties: JavaScript Object { ... } - this object contains the values for

allowOrientationChange and forceOrientation.
return values:
• none
events triggered:
• none

Clos in g Ex pandab le and In te r s t it ia l Ads
An MRAID-compliant SDK must provide an end-user with the ability to close an expanded or
interstitial ad. This is a requirement to ensure that users are always able to return to the
publisher content even if an ad has an error. The ad designer may optionally provide
additional design elements to close the expanded or interstitial view via the close() method,
described below. MRAID differentiates two aspects to a “close” feature:

• Close Event Region: The close event region is a tappable area on the ad creative that
will cause the ad to close and return to its default state. The close event region is
required and supplied by the container in the top-right corner of all MRAID
expandable and interstitial ads.

• Close Indicator: The close indicator is the visual cue to the user as to the location of
the close event region. By default the container will supply a close indicator
superimposed on the close event region. Optionally, the creative designer can use
their own close indicator graphic, in which case they can suppress the default close
indicator.

MRAID requires the location reserved for the close event region be a 50x50 clickable area in
the top-right corner of the ad container. Reserving this location provides consistency for ad
designers running campaigns across apps and rich media vendors. The default design of the
container-controlled close indicator is left to the vendor/app publisher. Ad designers may
optionally choose to provide the indicator for the default close capability. If the ad designer
builds the close indicator into the creative they must specify so via the useCustomClose()
method, or as a convenience by setting useCustomClose in the expandProperties() object. If
the ad designer does not provide its own close indicator graphic within the creative, the
container will supply its default close indicator. This container-supplied tappable area will be
placed at a higher level than other app or ad content, and must always be available to the
end user.

For Two-Part Ads: If expand was used with a URL parameter (e.g., a two-part ad), then
closing the ad must display the original content. If the app was suspended when the ad
changed to the expand state, then the app should be notified of the expansion status change.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 32 of 49
Final With Clarifications, April 16, 2013

For One-Part Ads: If the expanded or interstitial ad view was closed using the container-
supplied close event region, then the stateChange event is still fired and the app still notified of
the expansion status change. Expanded ads must always listen for the stateChange event and
adjust as necessary.

close method
The close method will cause the ad container to downgrade its state. For ads in an expanded
or resized state, the close() method moves the ad to a default state. For interstitial ads in a
default state, the close() method moves to a hidden state. For banners in a default state, the
effect of calling close() is deliberately left undefined by the MRAID specification. Depending
on the implementation, it may be ignored, cause an error, or change the state of the banner to
“hidden.” As a result it is generally not recommended that ad designers use mraid.close() in a
banner. This method may be used by ad designers as an addition to the MRAID-enforced
close ability. It will also fire the stateChange event.

Note that if an ad employs multiple resize() calls or a resize() followed by an expand(), close()
changes the creative back to its default, banner state. It does NOT simply undo the most
recently called resize() or expand().

close()

parameters:
• none
return values:
• none
event triggered:
• stateChange

useCustomClose method
Although MRAID requires all implementing containers to provide a clickable area with a
default “close” indicator graphic, it is possible for ad creators to use their own designs for the
close indicator.

This method serves as a convenience method to the expand property of the same name.
Setting the property or calling this method both have the same effect and can be used
interchangeably. If an ad sets useCustomClose via both expand properties AND this method,
whichever is invoked later will override the earlier setting. They signal the container to stop
using the default close indicator.

For expanded ads, the designer does not need to call this method and would normally set the
useCustomClose property in setExpandProperties().

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 33 of 49
Final With Clarifications, April 16, 2013

For a stand-alone interstitial where there is no call to expand(), but there is still a requirement
of an MRAID-enforced close control, the ad designer should call this method immediately after
the Ready event.

Ad designers should be clear that an MRAID-compliant SDK is required to show the default
close indicator until the useCustomClose method is called and/or the property is set.

useCustomClose(boolean)
parameters:
• true – ad creative supplies its own design for the close indicator
• false – container default image should be displayed for the close indicator
return values:
• none
events triggered:
• none

R es ize : En ab les Soph is t ica ted Ad Size Chan ges

Ad creative that needs to engage in a succession of size changes, or to change size non-
modally to less-than-fullscreen size, has the ability to do so by calling resize. As with expand,
the resize method operates at a higher z-index than the app content, and so is positioned
above the underlying content, and so does not push or reposition the app content.

resize method
The resize method will cause the existing web view to change size using the existing HTML
document. Like expand(), resize() size changes happen at highest level in the view hierarchy,
and so do not automatically shift or otherwise reposition underlying content. App publishers
that want to support content-shifting ads like “push-downs” can do so using resize but must
implement the repositioning of app content in response to the resize independently.

The resize method will move the state from "default" to "resized" and fire the stateChange
event. Resize can be called multiple times by the creative. Additional calls to resize will also
trigger the stateChanged event although the state value will remain “resized.” Calls to resize
from an “expanded” state will trigger an error event and not change the state.

Note: resize should not be used for ad creative that expands to full-screen (or larger) size: for
such creative executions expand() should always be used. Resize will always result in a non-
modal size change, and some portion of the app should always remain visible to the end user.

Use this method to request a resize of the default ad view to a desired size and screen
position. Note that resize() relies on parameters that are stored in the resizeProperties
JavaScript object. Thus the creative must set those parameters via the setResizeProperties()

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 34 of 49
Final With Clarifications, April 16, 2013

method BEFORE attempting to resize(). Calling resize() before setResizeProperties will result in
an error.

The container will notify the app of the resize request so that the app can react to the change
as appropriate. For example, a publisher integration may listen for resize() calls to implement
behavior like a “push-down” ad. If the resize is valid, then the sizeChange event is fired. If the
parameters are out of range, then the error event identifies the exception.

resize()

parameters:
• none
return values:
• none
events triggered:
• sizeChange, stateChange
side effects:
• changes state

Close Control for Resized Ads
As with expandable ads, resized ads must have a way for the person viewing the ad to return
the ad to its default state. MRAID differentiates two aspects to a “close” feature:

• Close event region: The close event region is a tappable area on the ad creative that
will cause the ad to close/collapse back to its default state. The close event region is
required and supplied by the container in a creative-specified location for all MRAID
resizable ads.

• Close Indicator: The close indicator is the visual cue to the user as to the location of
the close event region. For resized ads, the container does NOT supply a close
indicator superimposed on the close event region. Instead, FOR RESIZED ADS, THE
CREATIVE MUST ALWAYS SUPPLY ITS OWN CLOSE INDICATOR GRAPHIC.

MRAID-compliant SDKs must therefore always supply containers with a 50x50 close event
region located on the ad creative, tapping on which will return the ad to its default state.
While this close event region must be present, the ad designer can specify where on the ad the
control should be located. If the ad designer opts not to specify a location for the close event
region then by default the container will position it at the top right corner of the resized ad
container.

A resized ad must position itself such that the entire close event region appears onscreen. If
the container/SDK detects that a request to resize will result in the close event region being
offscreen, the container/SDK should return an error, and ignore the resize (e.g., leave the ad
in its current state). This requirement also means that a resized ad must be at least 50x50
pixels, to ensure there is room on the resized creative for the close event region.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 35 of 49
Final With Clarifications, April 16, 2013

Unlike the case of expand(), for resize() the container will not supply a close indicator. Rather,
it is expected that the ad designer will include a close indicator in the creative.

While the tappable close control is mandatory, ad designers are free to include other ways to
close a resized ad, by using MRAID’s close() method.

resizeProperties object

resizeProperties object = {
 “width” : integer,
 “height” : integer,
 “offsetX” : integer,
 “offsetY” : integer,
 “customClosePosition” : string,
 “allowOffscreen” : boolean
}

Notes:

• width : (required) integer – width of creative in pixels
• height : (required) integer – height of creative in pixels
• offsetX: (required) is the horizontal delta from the banner's upper left-hand corner

where the upper left-hand corner of the expanded region should be placed; positive
integers for expand right; negative for left

• offsetY: (required) is the vertical delta from the banner's upper left-hand corner where
the upper left-hand corner of the expanded region should be placed; positive integers
for expand down; negative for up

• customClosePosition: (optional) string – either "top-left", "top-right", "center", "bottom-
left", "bottom-right," “top-center,” or “bottom-center” indicates the origin of the
container-supplied close event region relative to the resized creative. If not specified
or not one of these options, will default to top-right.

• allowOffscreen: (optional) tells the container whether or not it should allow the resized
creative to be drawn fully/partially offscreen

o True (default): the container should not attempt to position the resized
creative

o False: the container should try to reposition the resized creative to always fit in
the getMaxSize() area

When allowOffscreen is set to False, the SDK will do its best to move the default (banner) ad
container to ensure that the resized creative fits on the screen. For example, if ad is on the top
of the screen, and ad wants to resize upwards by 50 pixels, then the SDK will move the
default (banner) ad 50 pixels down and then execute the resize. If allowOffscreen is set to
true in this case, the resized portion of the ad will extend off the top of the screen.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 36 of 49
Final With Clarifications, April 16, 2013

allowOffscreen cannot solve all positioning issues. For example, if an ad successfully resizes
in landscape orientation, but then becomes larger than the size of the screen due to an
orientation change to portrait, the setting of allowOffscreen to false will have no effect, as
there is no way the container/SDK can successfully reposition a landscape creative to fit on a
portrait screen.

Note that width, height, offsetX and offsetY are required and have no default properties. If the
ad creative attempts to call resize() before setting these four properties, the container will leave
the ad in its current state and return an error.

getResizeProperties method
The getResizeProperties method returns the whole JavaScript object resizeProperties object.

Use this method to get the properties for resizing an ad.

getResizeProperties() -> JavaScript Object
parameters:
• none
return values:
• { ... } - this object contains the resize properties
events triggered:
• none

setResizeProperties method
The setResizeProperties method sets the whole JavaScript object.

setResizeProperties(properties)

Use this method to set the ad's resize properties, in particular the width and height of the
resized ad creative.

parameters:
• properties: JavaScript Object { ... } - this object contains the width and height of the

resized ad, close position, offset direction (all in density-independent pixels), and
whether the ad can resize offscreen. For more info see properties object.

return values:
• none
events triggered:
• none

Resize ads should be QA tested carefully. Ads that set parameters that are impossible for the
container to follow will result in an error event being triggered and the resize will not take

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 37 of 49
Final With Clarifications, April 16, 2013

place. For example, an error will occur if an ad sets allowOffscreen to “false” but sets the
width and height of the resize to be too big to actually fit on the screen.

Ch eck in g P os it ion and Size o f t h e Screen and Ad
MRAID v2.0 includes several methods enabling an ad to check where and how large it is, and
the maximum size it can expand to. Ad designers can use these capabilities to give their ads
increased flexibility to behave differently on different devices and/or differently sized screens.

getCurrentPosition method
The getCurrentPosition method will return the current position and size of the ad view,
measured in density-independent pixels.

getCurrentPosition() -> JavaScript Object
parameters:
• none
return value:
• JavaScript Object - {x, y, width, height}: x=number of density-independent pixels offset

from left edge of the rectangle defining getMaxSize(); y=number of density-
independent pixels offset from top of the rectangle defining getMaxSize();
width=current width of container; height=current height of container (both measured in
density-independent pixels)

related events:
• none

getMaxSize method
The getMaxSize method returns the maximum size (in density-independent pixel width and
height) an ad can expand or resize to. If the app runs full-screen on the device (e.g., covers the
status bar), the max size will be the full screen dimensions. If the app runs at less than full
screen on the device, due to screen area reserved for a status bar or other elements outside
the app, then the max size will return the size of the view that contains the app (which defines
the maximum space the ad may resize within).

getMaxSize() -> JavaScript Object
parameters:
• none
return value:
• JavaScript Object, {width, height} - the maximum width and height the view can grow

to
related events:
• none

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 38 of 49
Final With Clarifications, April 16, 2013

sizeChange event
The sizeChange event fires when the ad’s size within the app UI changes. This can be the
result of an orientation change of the device or calls to the resize or expand methods.
Measurements are in density-independent pixels.

This event is triggered when the display state of the ad’s web view changes.

 sizeChange -> function(width, height)
parameters:
• width - Number: the width of the view
• height - Number: the height of the view
triggered by:
• a change in the view size as the result of a resize, expand, close, orientation, or the

app after registering a "size" event listener.

getDefaultPosition method
The getDefaultPosition method returns the position and size of the default ad view, measured in
density-independent pixels, regardless of what state the calling view is in.

Use this method to get the location and size of the default ad view.

getDefaultPosition() -> JavaScript Object
parameters:
• none
return values:
• JavaScript Object - {x, y, width, height}: x=number of density-independent pixels offset

from left of getMaxSize(); y=number of density-independent pixels offset from top of
getMaxSize(); width=current width of container; height=current height of container

getScreenSize method
The getScreenSize method returns the current actual pixel width and height, based on the
current orientation, in density-independent pixels, of the device on which the ad is running.
Note that the ScreenSize will change if the device is turned from portrait to landscape mode
(and vice versa). Note also that getScreenSize will return the TOTAL size of the device screen,
including area (if any) reserved by the OS for status/system bars or other functions, which
cannot be overridden by the app or the ad. Designers seeking to enable creative to check
how much usable screen real estate is available should use getMaxSize rather than
getScreenSize.

getScreenSize() -> JavaScript Object
parameters:
• none
return values:
• {width, height}
related event:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 39 of 49
Final With Clarifications, April 16, 2013

Of f lin e R equ est s an d Met r ics
Rich Media Ads that can work while the device is without network connectivity need the ability
to store and later forward metrics about how and when users interact with the ad.

MRAID has the potential to provide common APIs to facilitate storing and forwarding of ad
impression delivery, view, and other metrics from the app back to the ad server. However,
until measurement methodologies and the metrics themselves are standardized (for example
by the ongoing IAB/MMA/MRC In-App Ad Measurement Guidelines project), adding
measurement functionality to MRAID would be premature.

The MRAID working group expects that this capability will be evaluated and potentially added
to MRAID as part of a future release.

Access to Nat iv e Fea tu res
MRAID encourages the use of standard web technologies in ad design as much as possible
for presentation needs, basic functions, and even an increasing list of the advanced ad
functionalities required for truly rich media advertising. MRAID’s role around access to native
features is to help rich media ads discover what capabilities a device will support, and to fill in
any gaps in capability not widely available, or not fully stabilized and consistent, within
HTML5/Webkit.

supports method
The supports method allows the ad to interrogate the device for support of specific features.

An MRAID compliant SDK must be able to deliver all of these functionalities on any device that
is capable of them. However, individual publisher implementations of the SDK may result in
deactivating features/capabilities that conflict with publisher policies.

value description
sms the device supports using the sms: protocol to send an SMS message
tel the device supports initiating calls using the tel: protocol
calendar the device can create a calendar entry
storePicture the device supports the MRAID storePicture method

inlineVideo
The device can playback HTML5 video files using the <video> tag and
honors the size (width and height) specified in the video tag. This does not
require the video to be played in full screen.

supports(feature) -> Boolean
parameters:
• String, name of feature
return values:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 40 of 49
Final With Clarifications, April 16, 2013

• Boolean – true, the feature is supported and getter and events are available; false, the
feature is not supported on this device

Wor k in g w it h t h e Dev ice 's P h y s ica l Ch aracte r is t ics
Most devices have several different kinds of sensors that can report on various physical
characteristics of the device, such as its location, the direction it is pointing, its orientation, and
its motion. Access to most of these capabilities is standardized in HTML5 at present (or will be
in the near future), and where an open standard provides access to a device feature or
capability, MRAID defers to the open standard.

Device Orientation

Ad creative should be able to request the orientation of a device/web container via HTML5
with consistent results across devices and MRAID implementations. For Android
implementations and iOS versions after 5.0 this happens automatically; however, earlier iOS
implementations require a code tweak on the part of the SDK vendor in order to window
orientation changes fire events properly.

To be compliant with MRAID 2.0, an SDK needs to deploy a code modification of this sort for
pre-iOS 5.0 Apple devices. While SDK vendors can use whatever technical solution they
prefer to achieve this, the following sample code offers an example of a means to address this
issue.

-
(void)didRotateFromInterfaceOrientation:(UIInterfaceOrienta
tion) fromInterfaceOrientation {
 if (UIInterfaceOrientationIsPortrait(newOrientation) ||
 UIInterfaceOrientationIsLandscape(newOrientation)) {

 NSInteger degrees = 0;

 switch (self.interfaceOrientation) {
 case UIInterfaceOrientationPortrait:
 degrees = 0;
 break;
 case UIInterfaceOrientationLandscapeLeft:
 degrees = 90;
 break;
 case UIInterfaceOrientationLandscapeRight:
 degrees = -90;
 break;
 case UIInterfaceOrientationPortraitUpsideDown:
 degrees = 180;
 break;

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 41 of 49
Final With Clarifications, April 16, 2013

 default:
 // Don't care about this orientation.
 return;
 }

 // Update the window.orientation property then
trigger
 // onorientationchange().
 NSString *javascript = [NSString stringWithFormat:
 // Create the 'window.orientation' read-only
property.
 @"window.__defineGetter__('orientation',function(
){return %i;});"
 // Dispatch the 'orientationchange' event. This
also calls
 // 'window.onorientationchange()'.
 @"(function(){"
 @"var event = document.createEvent('Events');"
 @"event.initEvent('orientationchange', true,
false);"
 @"window.dispatchEvent(event);"
 @"})();",
 degrees];
 [self.webView
stringByEvaluatingJavaScriptFromString:javascript];
 }
}

Ad designers cannot rely on window.orientation to determine whether a device is in portrait or
landscape mode. The value of window.orientation is intended to indicate the screen's position
in relation to the “standard” orientation axis, i.e., the axis on which the values of a
DeviceOrientationEvent are reported. However, that standard orientation may not be portrait
(height greater than width) mode. Indeed, on widescreen Android tablets, such as the
Samsung Galaxy Tab 10.1., window.orientation is set to zero when the device is in landscape
(width greater than height) mode.

Ad designers should instead use the mraid.getScreenSize() method to retrieve the current width
and height of the device screen.

Sto r in g a P ict u r e
Rich Media Ad designers may want to add a picture to the camera roll or photo album of the
device they are running on. This can be handy for a number of features, including storing
coupons for later redemption.

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 42 of 49
Final With Clarifications, April 16, 2013

storePicture method
The storePicture method will place a picture in the device's photo album. The picture may be
local or retrieved from the Internet. To ensure that the user is aware a picture is being added
to the photo album, MRAID requires the SDK/container use an OS-level handler to display a
modal dialog box asking that the user confirm or cancel the addition to the photo album for
each image added. If the device does not have a native “add photo” confirmation handler,
the SDK should treat the device as though it does not support storePicture.

This method will store the image or other media type specified by the URI.

MRAID-compliant containers will support adding a picture via an HTTP redirect (for tracking
purposes); however they will not necessarily support meta redirects.

If the attempt to add the picture fails for any reason or is cancelled by the user, it will trigger
an error.

storePicture(URI)
parameter:
• URI -String: the URI to the image or other media asset
related event:
• none

Cr eat in g Ca len dar Ev en t s

createCalendarEvent method

The createCalendarEvent method opens the device UI to create a new calendar event. The ad
is suspended while the UI is open. To ensure the creation of a calendar event is always user
initiated and authorized, MRAID-compliant containers must invoke the device’s native “create
calendar event” sheet, pre-populated with data supplied by the ad. Where a device does not
support such a “create calendar event” sheet, the SDK should treat that device as if it does not
support adding calendar events.

Calendar event data should be delivered in the form of a JavaScript object written to the
W3C’s calendar specification. See Appendix.

If the attempt to create the calendar event fails or is cancelled by the user, it will trigger an
error.

createCalendarEvent(parameters)

parameters:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 43 of 49
Final With Clarifications, April 16, 2013

• parameters: JavaScript Object {…} – this object contains the parameters for the
calendar entry, written according to the W3C specification for calendar entries. See
Appendix.

 return value:
• none
related event:
• none

For example, the following would add a calendar event for the Mayan Apocalypse/End of the
World on December 21, 2012, taking place “everywhere” and starting at midnight Eastern
time and ending at midnight Eastern time on December 22, 2012.

createCalendarEvent({description: “Mayan
Apocalypse/End of World”, location: ‘everywhere’,
start: ‘2012-12-21T00:00-05:00, end: ‘2012-12-
22T00:00-05:00’})

Wor k in g w it h V ideo

Video on mobile devices can be played either inline (within the current web view, app, or
mobile web page) or by opening a native player on the device. For many advertising
applications, inline playback will be preferred: it is less disruptive to the viewer’s experience,
and playback within a web view enables HTML5 reporting on metrics related to how much of
the creative was viewed. These metrics are generally harder to access, or unavailable, when
video is viewed in the native player.

Ad designers must keep in mind that device/OS limitations may prevent inline video playback
(this is notably the case with devices running Android version 2.x and earlier).

However, MRAID-compliant containers should support inline playback where possible, and
permit ad designers to specify if video creative should play inline or in a separate player. Ad
designers can use the “supports(inlineVideo)” method to determine whether the device running
the creative will display video inline.

In order to enable inline video playback and autoplay of video, MRAID-compliant SDKs
should consistently insert the any necessary enabling tags into the web view depending on
operating system of the device.

For iOS devices, the following tags must be used:

• webView.mediaPlaybackRequiresUserAction = NO;
• webView.allowsInlineMediaPlayback = YES;

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 44 of 49
Final With Clarifications, April 16, 2013

For Android (Honeycomb, Ice Cream Sandwich and above) devices, the SDK must invoke
hardware acceleration, which is dependent on the view in question and how it is added to the
WindowManager:

• getWindow().setFlags(WindowManager.LayoutParams.FLAG_H
ARDWARE_ACCELERATED, WindowManager.LayoutParams.FLAG_H
ARDWARE_ACCELERATED);

For Android 2.x and earlier devices, it is not possible to play video inline; the native player is
always invoked by the playVideo method.

playVideo method
Use this method to play a video on the device via the device’s native, external player. Note
that this is purely a convenience method for the OS’s existing external player, and does not
imply a separate, SDK-based video player. To play video inline (on devices where that feature
is supported), use HTML5 video tags.

playVideo(URI)
parameters:
• URI - String, the URI of the video or video stream
return values:
• none

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 45 of 49
Final With Clarifications, April 16, 2013

Appendix: W3C CalenderEvent Interface
Taken from: W3C Calendar API, Sections 4.3 and 4.4
W3C Working Draft 19 April 2011
This version:

http://www.w3.org/TR/2011/WD-calendar-api-20110419/
Latest published version:

http://www.w3.org/TR/calendar-api/
Latest editor's draft:

http://dev.w3.org/2009/dap/calendar/
Editors:

Richard Tibbett, Opera Software ASA
Suresh Chitturi, Research in Motion (RIM)

Copyright © 2011 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

4.3 CalendarEvent interface

The CalendarEvent interface captures a calendar event object.

The current use of DOMString for dates and times is known to be insufficient for representing events with timezones. The
group is working on addressing that limitation, looking at the development of TZDate object that would address this.

[NoInterfaceObject]
interface CalendarEvent {
 readonly attribute DOMString id;
 attribute DOMString description;
 attribute DOMString? location;
 attribute DOMString? summary;
 attribute DOMString start;
 attribute DOMString? end;
 attribute DOMString? status;
 attribute DOMString? transparency;
 attribute CalendarRepeatRule? recurrence;
 attribute DOMString? reminder;
};

4.3.1 Attributes
description of type DOMString

A description of the event.

{description: "Meeting with Joe's team"}

http://www.w3.org/TR/2011/WD-calendar-api-20110419/
http://www.w3.org/TR/calendar-api/
http://dev.w3.org/2009/dap/calendar/
http://richt.me/
http://www.opera.com/
http://www.rim.com/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/2009/dap/track/issues/81

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 46 of 49
Final With Clarifications, April 16, 2013

No exceptions.

end of type DOMString, nullable

The end date and time of the event as a valid date or time string.

{end: '2011-03-24T10:00:00-08:00'} // Event ends on March 24,
2011 @ 6pm (UTC)

No exceptions.

id of type DOMString, readonly

A globally unique identifier for the given CalendarEvent object. Each
CalendarEvent referenced from Calendar MUST include a non-empty id value.

An implementation MUST maintain this globally unique resource identifier when a
calendar event is added to, or present within, a Calendar.

An implementation MAY use an IANA registered identifier format. The value can also
be a non-standard format.

No exceptions.

location of type DOMString, nullable

A plain text description of the location of the event.

{location: 'Conf call #+4402000000001'}

No exceptions.

recurrence of type CalendarRepeatRule, nullable

The recurrence or repetition rule for this event

{recurrence: {frequency: 'daily'}} // Event occurs every
day and never expires

{recurrence: {frequency: 'weekly', // Event occurs
weekly...

daysInWeek: [2, 4], // ...every Tuesday and Thursday

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 47 of 49
Final With Clarifications, April 16, 2013

expires: '2011-06-11T12:00:00-04:00'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

{recurrence: {frequency: 'weekly', // Event occurs
weekly...on every Wednesday

 // (if we say the
'start' attribute is March 24, 2011 @ 2pm (Wednesday) as

 // shown above and no
daysInWeek attribute is provided)

expires: '2011-06-11T11:00:00-05:00'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

{recurrence: {frequency: 'monthly', // Event occurs
monthly...

daysInMonth: [-5], // ...5 days before the end of each
month

expires: '2011-06-11T20:00:00+04:00'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

{recurrence: {frequency: 'monthly', // Event occurs
monthly...on the 24th day of every month

 // (if we say the
'start' attribute is March 24, 2011 @ 2pm as

 // shown above and no
daysInMonth attribute is provided)

expires: '2011-06-11T20:00:00+04:00'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

{recurrence: {frequency: 'yearly', // Event occurs
yearly...on the 24th day of every March

 // (if we say the
'start' attribute is March 24, 2011 @ 2pm as

 // shown above and no
daysInMonth attribute is provided)

expires: '2011-06-11T16:00:00+00:00'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

{recurrence: {frequency: 'yearly', // Event occurs
yearly...

daysInMonth: [24], // ...every 24th day...

monthsInYear: [3, 6], // ...in every March and June

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 48 of 49
Final With Clarifications, April 16, 2013

expires: '2011-06-11T16:00:00Z'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

{recurrence: {frequency: 'yearly', // Event occurs
yearly...

daysInYear: [168], // ...every 168th day of each year

expires: '2011-06-11T21:45:00+05:45'}} // Event expires on or
before June 11, 2011 @ 4pm (UTC)

No exceptions.

reminder of type DOMString, nullable

A reminder for the event.

This attribute can be specified as a positive valid date or time string.

, denoting a one-time reminder or as a negative value in milliseconds denoting a
relative relationship to the start time of the calendar event.

A relative reminder is recommended for setting a reminder for recurrent events.

{reminder: '2011-03-24T13:00:00+00:00'} // Remind ONCE on
March 24, 2011 @ 1pm (UTC)

{reminder: '-3600000'} // Remind 1 hour before every
occurrence of this event

No exceptions.

start of type DOMString

The start date and time of the event as a valid date or time string.

{start: '2011-03-24T09:00-08:00'} // Event starts on March
24, 2011 @ 5pm (UTC)

No exceptions.

status of type DOMString, nullable

An indication of the user's status of the event.

This parameter may be set to one of the following constants:

IAB Mobile Rich-media Ad Interface Definitions v.2.0

Page 49 of 49
Final With Clarifications, April 16, 2013

'pending', 'tentative', 'confirmed', 'cancelled'.

{status: 'pending'} // Event is awaiting user action

No exceptions.

summary of type DOMString, nullable

A summary of the event.

{summary: "Agenda:\n\n\t* Introductions\n\t* AoB"}

No exceptions.

transparency of type DOMString, nullable

An indication of the display status to set for the event.

This parameter may be set to one of the following constants:

'transparent', 'opaque'.

{freebusy: 'transparent'} // Mark event as transparent in
Calendar

No exceptions.

	Table of Contents
	Contributors
	Acknowledgement
	About MRAID
	IAB Contact Information

	Executive Summary
	Definitions
	General Requirements for Supporting MRAID
	Technical Audience
	Native Application Developer
	SDK Developer
	Ad Designer

	Viewport and Default Container Set-Up
	Out of Scope
	Standard Web Technologies
	Ad Server Requirements
	Requirements for Ad Rendering
	Display of HTML Ads – Ad View Container

	Requirements for Ad Designers
	Display Control for Rich Media Ads – Ad Controller

	Lifecycle Examples
	Simple Ad Lifecycle Example
	Lifecycle of an MRAID Expandable Ad Example

	MRAID Versions
	Version 1
	Version 2

	Interface Requirements and Definitions
	Identification
	MRAID script reference

	Initialization
	ready event
	getVersion method

	Initial Display
	Event Handling
	addEventListener method
	removeEventListener method

	Error Handling
	error event

	Controlling Ad Display
	getState method, stateChange event
	isViewable method, viewableChange event

	Changing the Size of an Ad
	Differences between resize(), expand(), and open()

	Open: Open an External Mobile Web Site in a Browser Window
	open method

	Hyperlinks
	Handling Call-to-Action Events
	Expand: Simple, Modal, Increase in Size of the Ad
	For ad creative that changes size in a relatively simple manner, typically expanding from banner to full-screen size, the expand method provides a simple way to communicate this to the container.
	expand method

	Controlling Expand Properties
	getExpandProperties method
	setExpandProperties method

	Controlling Orientation Properties
	getOrientationProperties method
	setOrientationProperties method

	Closing Expandable and Interstitial Ads
	close method

	Resize: Enables Sophisticated Ad Size Changes
	Ad creative that needs to engage in a succession of size changes, or to change size non-modally to less-than-fullscreen size, has the ability to do so by calling resize. As with expand, the resize method operates at a higher z-index than the app cont...
	resize method
	Close Control for Resized Ads
	getResizeProperties method
	setResizeProperties method

	Checking Position and Size of the Screen and Ad
	getCurrentPosition method
	getMaxSize method
	sizeChange event
	getDefaultPosition method
	getScreenSize method

	Offline Requests and Metrics
	Access to Native Features
	supports method

	Working with the Device's Physical Characteristics
	Device Orientation
	Ad creative should be able to request the orientation of a device/web container via HTML5 with consistent results across devices and MRAID implementations. For Android implementations and iOS versions after 5.0 this happens automatically; however, ea...
	To be compliant with MRAID 2.0, an SDK needs to deploy a code modification of this sort for pre-iOS 5.0 Apple devices. While SDK vendors can use whatever technical solution they prefer to achieve this, the following sample code offers an example of a...

	Storing a Picture
	storePicture method

	Creating Calendar Events
	createCalendarEvent method

	Working with Video
	Video on mobile devices can be played either inline (within the current web view, app, or mobile web page) or by opening a native player on the device. For many advertising applications, inline playback will be preferred: it is less disruptive to th...
	Ad designers must keep in mind that device/OS limitations may prevent inline video playback (this is notably the case with devices running Android version 2.x and earlier).
	However, MRAID-compliant containers should support inline playback where possible, and permit ad designers to specify if video creative should play inline or in a separate player. Ad designers can use the “supports(inlineVideo)” method to determine w...
	playVideo method

	Appendix: W3C CalenderEvent Interface

